Return to search

Asymptotic bounds and values for the norm of the Laplace operator and other partial differential operators on spaces of polynomials

In der vorliegenden Dissertation werden endlichdimensionale Räume multivariater Polynome in N Variablen mit der Laguerre-, Hermite- bzw. Legendrenorm versehen.
Dabei sei der Höchstgrad der Polynome oder die Summe der Grade der Variablen durch eine natürliche Zahl n nach oben beschränkt. Wir betrachten auf diesen Räumen den Laplaceoperator und zwei weitere partielle Differentialoperatoren
und interessieren uns für das Verhalten der von den Polynomnormen induzierten Operatornormen dieser Operatoren, wenn n gegen unendlich strebt.
Im Fall der Laguerre- und Legendrenorm werden asymptotische obere und untere Schranken der Operatornormen hergeleitet. Im Fall der Hermitenorm kann sogar eine asymptotische Formel gezeigt werden, wenn man voraussetzt, dass der Höchstgrad der Poynome duch n beschränkt ist.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:72803
Date09 December 2020
CreatorsRebs, Christian
ContributorsBöttcher, Albrecht, Roch, Steffen, Kunis, Stefan, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds