Return to search

Numerical Approach to the Landau-Zener Problem

In quantum mechanics it is not uncommon to find analytically solved problems involvinga degree of math too advanced for most. It is often helpful to use a numerical approachto test solutions and deepen the understanding of such problems. In order to determine the validity of this approach, it is important to examine its accuracy. An exampleof this is the Landau-Zener problem, which is the topic of this thesis. It describes atwo-state quantum mechanical system that is applicable to many real world situations.The numerical method used involves propagating the wave function by calculating thetime evolution operator for numerous time steps. The accuracy using this method wasanalysed by comparing the results with the exact solution with varying parameters. Theconclusion is that the numerical solution does converge toward the known analytical solution. However, it does this with different accuracy, depending on the system parameters.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-349367
Date January 2024
CreatorsKäll, Niklas, Ulander, Emil
PublisherKTH, Skolan för teknikvetenskap (SCI)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2024:177

Page generated in 0.0014 seconds