• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalizations of the Landau-Zener theory in the physics of nanoscale systems

Sinitsyn, Nikolai 30 September 2004 (has links)
Nanoscale systems have sizes intermediate between atomic and macroscopic ones. Therefore their treatment often requires a combination of methods from atomic and condensed matter physics. The conventional Landau-Zener theory, being a powerful tool in atomic physics, often fails to predict correctly nonadiabatic transition probabilities in various nanostructures because it does not include many-body effects typical for mesoscopics. In this research project the generalizations of the Landau-Zener theory that solve this problem were studied. The multistate, multiparticle and nonunitary extensions of the theory have been proposed and investigated. New classes of exactly solvable models have been derived. I discuss their applications in problems of the molecular condensate dissociation and of the driven charge transport. In application to the physics of nanomagnets new approaches in modeling the influence of the environment on the Landau-Zener evolution are proposed and simple universal formulas are derived for the extensions of the theory that include the coupling to noise and the nuclear spin bath.
2

Generalizations of the Landau-Zener theory in the physics of nanoscale systems

Sinitsyn, Nikolai 30 September 2004 (has links)
Nanoscale systems have sizes intermediate between atomic and macroscopic ones. Therefore their treatment often requires a combination of methods from atomic and condensed matter physics. The conventional Landau-Zener theory, being a powerful tool in atomic physics, often fails to predict correctly nonadiabatic transition probabilities in various nanostructures because it does not include many-body effects typical for mesoscopics. In this research project the generalizations of the Landau-Zener theory that solve this problem were studied. The multistate, multiparticle and nonunitary extensions of the theory have been proposed and investigated. New classes of exactly solvable models have been derived. I discuss their applications in problems of the molecular condensate dissociation and of the driven charge transport. In application to the physics of nanomagnets new approaches in modeling the influence of the environment on the Landau-Zener evolution are proposed and simple universal formulas are derived for the extensions of the theory that include the coupling to noise and the nuclear spin bath.
3

Adiabatic Transfer of Light in a Double Cavity

miladinovic, nick k. January 2011 (has links)
<p>The goal of this thesis is to perform a simple theoretical analysis of the problem of two optical cavities coupled by a common mirror which is movable. The mirror position controls the electromagnetic mode structure of the double cavity. Modes can be transferred from one side to the other by moving the mirror, thereby allowing deterministic and on-demand transfer of photons between two cavities. By mapping the Maxwell wave equation onto the Schr\"{o}dinger wave equation, we are able to make use of the Landau-Zener result for the transition probability at an avoided crossing to obtain the conditions for adiabatic transfer.</p> / Master of Science (MS)
4

Dynamique quantique dans un tourniquet à électrons basé sur une boîte quantique / Quantum dynamics revealed in weakly coupled quantum dot - superconductor turnstiles

Van Zanten, David 01 June 2015 (has links)
Le contrôle du nombre et de l'état quantique d'électrons individuels est un élément clé pour la construction d'applications innovantes comme les sources à un électron ou les standards métrologiques de courant. La difficulté d'atteindre la précision métrologique pour une source de courant alimente la recherche fondamentale sur le transport individuel d'électrons dans les structures mésoscopiques. Un candidat prometteur combine le concept de quantification de la charge dans un transistor à un électron et la bande interdite de la densité d'états d'électrodes supraconductrices. Le transport corrélé en temps d'électrons entre les électrodes supraconductrices est alors assuré par la densité d'états continue de l'ilot métallique central. Le grand nombre d'états électroniques disponibles dans l'ilot, bien que favorable en termes de couplage tunnel, a néanmoins deux conséquences importantes que sont les fluctuations thermiques et des processus parasites d'ordre supérieur, ce qui limite la performance de ces dispositifs. Dans ce contexte, nous explorons le transport de charges dans un tourniquet à électrons hybride basé sur une boîte quantique en lieu et place de l'ilot métallique. Les dispositifs sont réalisés par l'électromigration contrôlée de constrictions d'Aluminium précédée par le dépôt aléatoire de nano-particules d'or. Ce procédé in-situ (réalisé à 4 K) permet l'obtention de jonctions tunnel entre des électrodes supraconductrices d'aluminium et nano-particules d'or avec un taux de succès de l'ordre de 4%. Nous caractérisons le transport statique et en fréquence dans ces nanostructures par la mesure statique du courant à une température de 100 mK dans un environnement fortement filtré, mais néanmoins compatible avec l'électro-migration, d'un réfrigérateur à dilution. L'analyse des cartes de conductance en fonction des tensions drain-source et de grille révèle une énergie de charge très élevée de l'ordre de 10 meV et un écart entre niveaux discrets d'énergie de l'ordre de 1 meV. Par une étude détaillée de l'élargissement des pics de cohérence au seuil du blocage de Coulomb, nous montrons que le transport électronique est assuré par un niveau unique dans la boîte quantique. Bien que le couplage tunnel soit faible, le temps de vie d'un électron dans un niveau donné est dominé par l'hybridation des états électroniques entre les électrodes et la boîte quantique. En effet, les fluctuations thermiques et les processus inélastiques sont inopérants du fait du grand écart d'énergie entre niveaux et de la bande interdite supraconductrice dans les électrodes. L'observation de résonances sous le seuil imposé par le blocage de Coulomb est décrite par des processus de cotunneling de type paire de Cooper-électron. Lorsqu'un signal radio-fréquence de forme sinusoïdale ou carrée est ajouté à la tension de grille, un fonctionnement de tourniquet à électron est montré. Nous obtenons un courant quantifié jusqu'à une fréquence de 200 MHz, au delà de laquelle la précision se dégrade à cause d'évènements tunnel manqués. Le couplage à un niveau unique dans la boîte quantique est clairement démontré par l'apparition d'effets de transport tunnel inversé à grande tension drain-source ainsi que l'insensibilité à la température jusqu'à environ 300 mK. Enfin, nous observons une suppression systématique du courant uniquement à basse fréquence et avec un signal r.f. sinusoïdal. En accord avec une prédiction théorique, nous montrons que les effets tunnel manqués sont causés par un processus adiabatique au travers l'anti-croisement d'un niveau quantique sur la boîte quantique avec la densité d'états des électrodes supraconductrices. Nos expériences fournissent la première démonstration expérimentale de la répulsion de niveaux entre un niveau discret et un semi-continuum, illustrant ainsi l'évolution cohérente de nos tourniquets hybrides à électron dans un régime adiabatique. / Accurate control over the state and motion of single individual electrons would enable a variety of appealing applications reaching from quantized to quantum coherent electron sources. Realizing the accuracy of quantized current sources required for a metrological standard is however extremely challenging and has naturally fuelled fundamental research into single electron transport through mesoscopic structures. A promising candidate, foreseen to meet the demand, combines the concept of quantized charge in single electron transistors (SETs) and the gapped density of states in superconducting metals (hence called hybrid electron turnstile), to produce a quantized current. The time-correlated electron transport (sub-poissonian) between the superconducting leads is conveyed by the continuous density of states of the central normal island. The large amount of available states at the normal island, although favorable in terms of tunnel coupling, has nevertheless two important ramifications i.e. 1) thermal fluctuations and 2) adverse higher-order processes, which limit the performance of hybrid electron turnstiles. Inspired by this ingenious application and the advances in quantum dot trans- port, we explore the operation of a hybrid electron turnstile embodying a bottom-up quantum dot instead of the usual metallic island. The desired devices are obtained by controlled electromigration of aluminium nano-wires preceded by the deposition of gold nano-particles. This in-situ process (conducted at 4 K) produces pristine tunnel junctions between aluminium leads and gold nano-particles with a yield of about 4%. We characterize the stationary and turnstile operation by direct current measurements at 100 mK, in a heavily filtered, but electromigration compatible, inverse dilution refrigerator. Analysis of the acquired conductance maps under stationary conditions, reveal a large charging energy (> 10 meV) and mean level spacing (> 1 meV). With a detailed study of the coherence peak broadening at the Coulomb blockade (CB) threshold, we show that electron transport through the quantum dot is conveyed by a single quantum level. Although the tunnel coupling is weak, the single level life-time is dominated by the lead - quantum dot hybridization as thermal energy fluctuation and in-elastic scattering are suppressed by the large single level spacing on the quantum dot and the superconducting gap in the leads. The observation of sub-threshold resonances parallel to the CB diamond edges are consistent with earlier predicted higher-order Cooper-pair - electron (CPE) cotunneling processes. Under turnstile operation a periodic modulation signal (sine or square wave) is added to the static gate potential. We demonstrate quantized current up to 200 MHz at which its accuracy starts to worsen due to missed tunnel events. Strong experimental evidence of the single quantum dot level nature of our turnstile device is provided by a sharp onset of backtunneling processes and the temperature-robust operation beyond 300 mK. Finally we observe a systematic current suppression unique to the low frequency sine wave operation. Supported by theoretical work, we show that the underlying missed tunnel events are caused by adiabatic traverses across the avoided crossing of a quantum dot level and superconducting gap edges. These experiments deliver the first experimental observation of the level repulsion between an electronic discrete state and a semi-continuum and demonstrate the quantum coherent evolution of our devices under adiabatic operation conditions.
5

Spectroscopy of artificial atoms and molecules

Tuorila, J. (Jani) 25 May 2010 (has links)
Abstract Elementary experiments of atomic physics and quantum optics can be reproduced on a circuit board using elements built of superconducting materials. Such systems can show discrete energy levels similar to those of atoms. With respect to their natural cousins, the enhanced controllability of these ‘artificial atoms’ allows the testing of the laws of physics in a novel range of parameters. Also, the study of such systems is important for their proposed use as the quantum bits (qubits) of the foreseen quantum computer. In this thesis, we have studied an artificial atom coupled with a harmonic oscillator formed by an LC-resonator. At the quantum limit, the interaction between the two can be shown to mimic that of ordinary matter and light. The properties of the system were studied by measuring the reflected signal in a capacitively coupled transmission line. In atomic physics, this has an analogy with the absorption spectrum of electromagnetic radiation. To simulate such measurements, we have derived the corresponding equations of motion using the quantum network theory and the semi-classical approximation. The calculated absorption spectrum shows a good agreement with the experimental data. By extracting the power consumption in different parts of the circuit, we have calculated the energy flow between the atom and the oscillator. It shows that, in a certain parameter range, the absorption spectrum obeys the Franck-Condon principle, and can be interpreted in terms of vibronic transitions of a diatomic molecule. A coupling with a radiation field shifts the spectral lines of an atom. In our system, the interaction between the atom and the field is nonlinear, and we have shown that a strong monochromatic driving results in energy shifts unforeseen in natural or, even, other artificial atoms. We have used the Floquet method to calculate the quasienergies of the coupled system of atom and field. The oscillator was treated as a small perturbation probing the quasienergies, and the resulting absorption spectrum agrees with the reflection measurement.
6

La boîte quantique triple : nouvelles oscillations et incorporation de microaimants

Poulin-Lamarre, Gabriel January 2014 (has links)
Les qubits de spin sont des candidats prometteurs pour le traitement de l’information quantique en raison de leurs longs temps de cohérence. Les deux principaux qubits présents dans un système à trois spins ont été démontré au cours des dernières années dans la boîte quantique latérale triple. Le diagramme des niveaux d’énergie de quelques électrons dans la boîte quantique triple est beaucoup plus complexe que son homologue à deux ou à une boîte. Il en résulte des possibilités de fuites hors des qubits ciblés. Dans ce mémoire, nous présenterons une nouvelles technologie pour améliorer le contrôle des états de spin et augmenter le temps de cohérence des qubits. Nous avons effectué des mesures préliminaires sur des échantillons sur lesquels a été incorporé un microaimant. Ce microaimant crée un champ magnétique non-uniforme au niveau des boîtes quantiques qui sera utilisé pour effectuer une rotation de spin et pour améliorer certains types d’oscillations. Nous avons optimisé la forme des géométries afin de créer des gradients de champ magnétique optimaux spécifiquement pour la boîte quantique triple. Différents problèmes ont été encourus et la stratégie que nous avons adoptée pour les régler sera présentée. De plus, nous avons analysé les phénomènes de fuites entre les états quantiques en étudiant la réponse d’un système à trois spins en fonction de différentes impulsions électriques. Nous présentons deux processus d’interférence jamais répertoriés entre les qubits de la boîte quantique triple. Afin d’identifier l’origine de ces interférences, nous avons utilisé leur dépendance en champ magnétique.
7

Transitions landau-zener de paires d'atomes de Rydberg froids en interaction dipole-dipole / Landau-zener transitions in frozen pairs of Rydberg atoms in dipole-dipole interaction

Cournol, Anne 09 December 2011 (has links)
Cette thèse porte sur l’étude des interactions dipôle-dipôle entre des atomes de Rydberg froids formés au sein d'un jet supersonique, en particulier sur l'étude des transitions Landau-Zener autour d'une résonance de Förster dans des sytèmes de paires d'atomes de Rydberg. L'adiabaticité de la transition dépend de la distance entre les atomes de la paire et est contrôlée par l'application d'un champ électrique homogène dépendant du temps. L'étude des processus binaires, non collisionnels et dont l'efficacité est contrôlé par l'expérimentateur, permet de sonder l'environnement de chaque atome et constitue une mesure de la distribution de plus proches voisins. Nous en déduisons une méthode originale de mesure directe et précise de la densité d'un gaz de Rydberg. Cette méthode ne nécessite ni la connaissance du nombre d'atomes de Rydberg ni celle du volume du gaz. Après un passage adiabatique de paire, les atomes de Rydberg constituant cette paire se trouvent dans un état intriqué. Nous proposons une méthode pour prouver leur intrication, fondée sur la mesure de la fluctuation quantique au cours d'oscillations de Rabi entre des états de paire. / This thesis deals with the study of dipole-dipole interaction between Rydberg atoms, in particular of Landau-Zener transitions around a Förster resonance for Rydberg atoms pairs. The adiabaticity of the transition depends of the interatomic distance and is controlled by a time-dependant electric field. The adiabatic transition efficiency is the control knob to probe the nearest neighbour distribution. We infer a new and original method to measure the density of a gas very accurately by probing the nearest neighbour distibution in the gas, which depends parametrically on its density. Such adiabatic transitions should leave the pair of Rydberg atoms in an entangled state. We investigated how quantum fluctuations could reveal the atom entanglement, in two-atom Rabi oscillation measurements.
8

Approximation de Born-Oppenheimer en présence de (presque) croisement de surfaces d'énergie

ROUSSE, Vidian 24 June 2004 (has links) (PDF)
L'approximation de Born-Oppenheimer consiste à traiter de manière semi-classique l'équation de Schrödinger associée à une molécule en utilisant la petitesse du rapport de masse entre électrons et noyaux. Nous montrons que pour un type générique de presque croisement de codimension 1 de deux surfaces d'énergie électroniques, la propagation d'un paquet d'ondes nucléaire gaussien associé à l'une des surfaces est gouvernée par une formule du type Landau-Zener. Par ailleurs, dans le cadre de l'équation de Schrödinger stationnaire unidimensionnelle et en situation de croisement générique de deux courbes d'énergie, nous construisons des quasimodes par intégration d'un paquet d'ondes gaussien propagé le long d'une trajectoire classique périodique associée à l'une des deux courbes d'énergie.
9

Landau-Zener transitions in noisy environment and many-body systems

Sun, Deqiang 16 January 2010 (has links)
This dissertation discusses the Landau-Zener (LZ) theory and its application in noisy environments and in many-body systems. The first project considers the effect of fast quantum noise on LZ transitions. There are two important time intervals separated by the characteristic LZ time. For each interval we derive and solve the evolution equation, and match the solutions at the boundaries to get a complete solution. Outside the LZ time interval, we derive the master equation, which differs from the classical equation by a quantum commutation term. Inside the LZ time interval, the mixed longitudinal-transverse noise correlation renormalizes the LZ gap and the system evolves according to the renormalized LZ gap. In the extreme quantum regime at zero temperature our theory gives a beautiful result which coincides with that of other authors. Our initial attempts to solve two experimental puzzles - an isotope effect and the quantized hysteresis curve of a single molecular magnet - are also discussed. The second project considers an ultracold dilute Fermi gas in a magnetic field sweeping across the broad Feshbach resonance. The broad resonance condition allows us to use the single mode approximation and to neglect the energy dispersion of the fermions. We then propose the Global Spin Model Hamiltonian, whose ground state we solve exactly, which yields the static limit properties of the BEC-BCS crossover. We also study the dynamics of the Global Spin Model by converting it to a LZ problem. The resulting molecular production from the initial fermions is described by a LZ-like formula with a strongly renormalized LZ gap that is independent of the initial fermion density. We predict that molecular production during a field-sweep strongly depends on the initial value of magnetic field. We predict that in the inverse process of molecular dissociation, immediately after the sweeping stops there appear Cooper pairs with parallel electronic spins and opposite momenta.
10

Estudo comparativo entre duas teorias de perturbação dependentes do tempo em mecânica quântica

Lima, Diogo Henrique Garcia 25 February 2016 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-10-11T11:52:52Z No. of bitstreams: 1 DissDHGL.pdf: 2463091 bytes, checksum: 8e959cfba32ae62b949f2465a30698d6 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-19T17:29:01Z (GMT) No. of bitstreams: 1 DissDHGL.pdf: 2463091 bytes, checksum: 8e959cfba32ae62b949f2465a30698d6 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-19T17:29:10Z (GMT) No. of bitstreams: 1 DissDHGL.pdf: 2463091 bytes, checksum: 8e959cfba32ae62b949f2465a30698d6 (MD5) / Made available in DSpace on 2016-10-19T17:34:31Z (GMT). No. of bitstreams: 1 DissDHGL.pdf: 2463091 bytes, checksum: 8e959cfba32ae62b949f2465a30698d6 (MD5) Previous issue date: 2016-02-25 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / This monograph shows two perturbative methods to determine the time evolution of quantum systems described by time-depependent Hamiltonians. One method is the standard time-dependent perturbation theory usually found in text books of quantum mechanics. The other method is the adiabatic perturbation theory, whose perturbative corrections are obtained from the quantum adiabatic approximation. To compare the efficiency of those methods we apply them to two time-dependent problems. One is the Landau- Zener problem, whose time dependency is linear on time. We also show three analytical solutions to this problem. The other problem is a Hamiltonian which has a cyclic perturbation, whose numerical solution is employed to compare the efficacy of both perturbative methods. The comparison between the two perturbation theories is based on the graphics of transition probability and of the fidelity, where all quantities are computed using the perturbative methods and the exact solutions to the problems. We conclude that the adiabatic perturbation theory improves the adiabatic approximation, is better than the standard theory when we deal with the limited Hamiltonian, and is relatively better than the standard theory for the Landau-Zener model. / Esta dissertação apresenta dois métodos perturbativos para determinar a evolução temporal de sistemas quânticos cujas Hamiltonianas dependam explicitamente do tempo. Um destes métodos é a teoria de perturbação dependente do tempo usualmente encontrada nos livros textos de mecânica quântica. O outro método chama-se teoria de perturbação adiabática, cujas correções perturbativas são obtidas a partir da aproximação adiabática. A fim de comparar a eficiência desses métodos, vamos aplicá-los na solução de dois problemas dependentes do tempo. Um deles será o problema de Landau-Zener com dependência linear no tempo, onde apresentamos três possíveis soluções analíticas entre tantas outras desenvolvidas na literatura. O outro problema será uma Hamiltoniana que varia ciclicamente no tempo, cuja solução numérica será usada para comparar com as teorias perturbativas. Nossa comparação consistiu em analisar os gráficos da probabilidade de transição e da fidelidade, nos quais foram plotados as equações da teoria padrão juntamente com a teoria adiabática e as soluções numéricas/analíticas. Concluímos que a teoria de perturbação adiabática melhora significativamente a aproximação adiabática e é superior a teoria da perturbação temporal no caso da Hamiltoniana limitada e relativamente melhor também no modelo de Landau-Zener.

Page generated in 0.0624 seconds