Return to search

The Eigenvalue Problem of the 1-Laplace Operator

As a first aspect the thesis treats existence results of the perturbed eigenvalue problem of the 1-Laplace operator. This is done with the aid of a quite general critical point theory results with the genus as topological index. Moreover we show that the eigenvalues of the perturbed 1-Laplace operator converge to the eigenvalues of the unperturebed 1-Laplace operator when the perturbation goes to zero. As a second aspect we treat the eigenvalue problems of the vectorial 1-Laplace operator and the symmetrized 1-Laplace operator. And as a third aspect certain related parabolic problems are considered.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-161044
Date19 February 2015
CreatorsLittig, Samuel
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Friedemann Schuricht, Prof. PhD. Jan Kristensen
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0023 seconds