Return to search

Aportes al Estudio de Operadores Elípticos no Lineales

La primera parte de la presente memoria busca encontrar la sucesi´on completa de valores
propios asociados a funciones propias con simetr´ıa radial para el problema
H(u00, u0, x) + hb(x), |ru| rui + c(x)|u| u = − |u| u en BR(0),
u = 0 en @BR(0),
donde H es un operador el´ıptico ( + 1)-homog´eneo y H, b y c presentan simetr´ıa radial.
Para el caso unidimensional la elipticidad permite reformular este problema como
un problema cuasilineal del tipo ( + 2)-Laplaciano. Esta reformulaci´on permite usar argumentos
de ecuaciones diferenciales ordinarias para encontrar el primer valor propio en
un intervalo. Posteriormente un argumento tipo Nehari, basado en teor´ıa del grado, posibilita
localizar los k ceros de la k-´esima funci´on propia, construida al tomar la primera
funci´on propia entre dos ceros consecutivos. Esta operaci´on puede hacerse un´ıvocamente
gracias a un principio del m´aximo ad hoc. Finalmente, cotas apropiadas para las soluciones
en dimensiones mayores permiten emplear los mismos argumentos del caso unidimensional.
La segunda parte est´a enfocada a resolver una ecuaci´on con no linealidad no Lipschitziana
y un operador integral:
(− ) u = up − uq en RN, l´ım
|x|!1
u(x) = 0,
donde u > 0, 2 (0, 1), 0 < q < 1 < p < N+2
N−2 y N 3. Una t´ecnica basada en el
principio variacional de Ekeland y el teorema del paso de la monta˜na permite demostrar
la existencia de soluciones d´ebiles en H (RN)\Lq+1(RN). Mediante una iteraci´on basada
en la teor´ıa Lp, el uso del n´ucleo de Bessel (al sumar u a ambos lados de la ecuaci´on) y
un argumento de localizaci´on de Silvestre se prueba la regularidad de las soluciones en
H (RN); en particular, que (− ) u puede evaluarse en cada punto de RN.
El uso de subsoluciones y supersoluciones apropiadas permite encontrar la tasa de
decaimiento de las soluciones cl´asicas del problema. Finalmente, empleando un resultado de
simetr´ıa de Terracini para un problema con condici´on de borde Neumann en el semiespacio,
junto al trabajo de Caffarelli y Silvestre, se muestra la simetr´ıa radial de las soluciones del
problema.

Identiferoai:union.ndltd.org:UCHILE/oai:repositorio.uchile.cl:2250/104100
Date January 2011
CreatorsValdebenito Castillo, Darío Andrés
ContributorsFelmer Aichele, Patricio, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Matemática, Martínez Salazar, Salomé, Pino Manresa, Manuel del
PublisherUniversidad de Chile, CyberDocs
Source SetsUniversidad de Chile
LanguageSpanish
Detected LanguageSpanish
TypeTesis
RightsValdebenito Castillo, Darío Andrés

Page generated in 0.0018 seconds