Return to search

Large language models as an interface to interact with API tools in natural language

In this research project, we aim to explore the use of Large Language Models (LLMs) as an interface to interact with API tools in natural language. Bubeck et al. [1] shed some light on how LLMs could be used to interact with API tools. Since then, new versions of LLMs have been launched and the question of how reliable a LLM can be in this task remains unanswered. The main goal of our thesis is to investigate the designs of the available system prompts for LLMs, identify the best-performing prompts, and evaluate the reliability of different LLMs when using the best-identified prompts. We will employ a multiple-stage controlled experiment: A literature review where we reveal the available system prompts used in the scientific community and open-source projects; then, using F1-score as a metric we will analyse the precision and recall of the system prompts aiming to select the best-performing system prompts in interacting with API tools; and in a latter stage, we compare a selection of LLMs with the best-performing prompts identified earlier. From these experiences, we realize that AI-generated system prompts perform better than the current prompts used in open-source and literature with GPT-4, zero-shot prompts have better performance in this specific task with GPT-4 and that a good system prompt in one model does not generalize well into other models.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-124976
Date January 2023
CreatorsTesfagiorgis, Yohannes Gebreyohannes, Monteiro Silva, Bruno Miguel
PublisherLinnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds