La détection hétérodyne infrarouge est une technique qui a été développée principalement pour améliorer la détectivité des détecteurs infrarouges, en particulier dans la fenêtre 8-12 μm. Cette technique a longtemps été étroitement associée à l’usage de lasers à gaz. Les domaines d’applications ont été principalement les études astrophysiques et atmosphériques. Peu d’autres applications ont pu être envisagées du fait de la complexité de mise en oeuvre et de l’encombrement de ce type d’instruments. Les progrès récents dans le domaine des lasers à semi-conducteurs (les lasers à cascade quantique - QCL - couvrent une grande partie du spectre infrarouge) permettent d’envisager de nouveaux développements et de nouvelles applications pour la détection hétérodyne infrarouge, par exemple pour la détection et l’identification à distance de molécules d’intérêt atmosphérique telles que les polluants. Les principaux atouts de la détection hétérodyne concernent la sélectivité spectrale et directionnelle de l’instrument. Elle est applicable dans le domaine civil aux molécules d’intérêt atmosphérique telles que l’ozone et le dioxyde de carbone et pour le domaine militaire à la détection d’espèces dangereuses. Un récepteur hétérodyne a été réalisé avec un QCL émettant autour de 10 μm et un corps noir stabilisé en température. Dans ce but, plusieurs systèmes ont été envisagés : un système à base de lentilles, un autre à base de miroirs paraboliques hors axes et un dernier à base de fibres optiques moyen infrarouge. Parallèlement, un héliostat a aussi été développé dans le but de réaliser des mesures atmosphériques. / Infrared heterodyne sensing is a technique which has been developed primarily toimprove the detectivity of infrared detectors, particularly in the 8 − 12 μm window. This technique has long been closely associated with the use of gas lasers. The fields of application were mainly astrophysical and atmospheric studies. Due to the complexity of implementation and the size of this type of instrument, ew other applications could have been envisaged. Recent progress in the field of semiconductor lasers (Quantum Cascade Laser - QCL - cover a large part of the infrared spectrum) enable to consider new developments and new applications for infrared heterodyne sensing, for example for the remote detection and identification of atmospheric molecules, such as pollutants. The main advantages of heterodyne sensing concern spectral and directional selectivity of the instrument. It is applicable in civil sector to atmospheric molecules such as ozone and carbon dioxide, and for the military one to detect hazardous species. A heterodyne receiver has been developed with a QCL emitting at around 10 μm and a temperature stabilized black body. To this end, several systems were considered: a system based on lens, another one based on off-axis parabolic mirrors and a last one based on mid-infrared optical fibers. Meanwhile, a heliostat has also been developed in order to do atmospheric measurements.
Identifer | oai:union.ndltd.org:theses.fr/2016REIMS027 |
Date | 28 June 2016 |
Creators | Mammez, Marie-Hélène |
Contributors | Reims, Parvitte, Bertrand |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds