abstract: Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when the rabies virus reaches the brain, the incubation period is over and the symptoms of clinical disease appear on the victim. From the brain, the virus travels via nerves to the salivary glands and saliva.
A mathematical model is developed for the spread of rabies in a spatially distributed fox population to model the spread of the rabies epizootic through middle Europe that occurred in the second half of the 20th century. The model considers both territorial and wandering rabid foxes and includes a latent period for the infection. Since the model assumes these two kinds of rabid foxes, it is a system of both partial differential and integral equations (with integration
over space and, occasionally, also over time). To study the spreading speeds of the rabies epidemic, the model is reduced to a scalar Volterra-Hammerstein integral equation, and space-time Laplace transform of the integral equation is used to derive implicit formulas for the spreading speed. The spreading speeds are discussed and implicit formulas are given for latent periods of fixed length, exponentially distributed length, Gamma distributed length, and log-normally distributed length. A number of analytic and numerical results are shown pertaining to the spreading speeds.
Further, a numerical algorithm is described for the simulation
of the spread of rabies in a spatially distributed fox population on a bounded domain with Dirichlet boundary conditions. I propose the following methods for the numerical approximation of solutions. The partial differential and integral equations are discretized in the space variable by central differences of second order and by
the composite trapezoidal rule. Next, the ordinary or delay differential equations that are obtained this way are discretized in time by explicit
continuous Runge-Kutta methods of fourth order for ordinary and delay differential systems. My particular interest
is in how the partition of rabid foxes into
territorial and diffusing rabid foxes influences
the spreading speed, a question that can be answered by purely analytic means only for small basic reproduction numbers. I will restrict the numerical analysis
to latent periods of fixed length and to exponentially
distributed latent periods.
The results of the numerical calculations
are compared for latent periods
of fixed and exponentially distributed length
and for various proportions of territorial
and wandering rabid foxes.
The speeds of spread observed in the
simulations are compared
to spreading speeds obtained by numerically solving the analytic formulas
and to observed speeds of epizootic frontlines
in the European rabies outbreak 1940 to 1980. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2018
Identifer | oai:union.ndltd.org:asu.edu/item:51708 |
Date | January 2018 |
Contributors | Alanazi, Khalaf Matar (Author), Thieme, Horst R. (Advisor), Jackiewicz, Zdzislaw (Committee member), Baer, Steven (Committee member), Gardner, Carl (Committee member), Kuang, Yang (Committee member), Smith, Hal (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 206 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds