New technology in the automotive industry is the key to success. Therefore, it is appreciated when people come with new design ways to solve problems. This leads to innovation in the automotive industry that will lead to better and more environmentally friendly cars. This report presents a concept on a pushing counter lever spring which provides the same characteristics of force curve as a diaphragm spring in a pressure plate of a car has. The mechanism is to be used for long-term testing and evaluating clutch pedals. The work describes the development process and the manufacture of a prototype. The program Creo (CAD / 3D) is largely used to construct the components. As are the subprograms Mechanism Design and Simulate to simulate the movement and loads. Excel is a great help at the theoretical calculation of the mechanism and to evaluate the theory behind the concept. The result shows how to simulate a diaphragm spring in the pressure plate in a car for long-term testing of clutch pedals. The goal is to accurately mimic the force curve of a diaphragm spring, in order to design better pedals, and thus reduce the weight on the pedals to in turn reduce fuel consumption to protect the environment is one of the most important factors of all in the automotive industry.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hb-12141 |
Date | January 2016 |
Creators | Sharef, Hajan, Potari, Marek |
Publisher | Högskolan i Borås, Akademin för textil, teknik och ekonomi, Högskolan i Borås, Akademin för textil, teknik och ekonomi |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds