Return to search

A study on ligninolytic enzyme coding genes of Pleurotus pulmonarius for degrading pentachlorophenol (PCP).

Yau Sze-nga. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 155-177). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ii / 摘要 --- p.v / Table of Contents --- p.vii / List of Figures --- p.xi / List of Tables --- p.xiv / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Organopollutants and environment --- p.1 / Chapter 1.2 --- Pentachlorophenol --- p.3 / Chapter 1.2.1 --- Application of pentachlorophenol --- p.3 / Chapter 1.2.2 --- Characteristics of PCP --- p.4 / Chapter 1.2.3 --- Toxicity of PCP --- p.5 / Chapter 1.2.4 --- Environmental exposure of PCP --- p.6 / Chapter 1.3 --- Wastewater treatments of organopollutants --- p.9 / Chapter 1.3.1 --- Physical treatment --- p.10 / Chapter 1.3.2 --- Chemical treatment --- p.10 / Chapter 1.3.3 --- Bioremediation --- p.11 / Chapter 1.4 --- Biodegradation of PCP --- p.13 / Chapter 1.4.1 --- Biodegradation of PCP by bacteria --- p.13 / Chapter 1.4.2 --- Biodegradation of PCP by fungi --- p.14 / Chapter 1.5 --- Ligninolytic enzyme --- p.16 / Chapter 1.5.1 --- Lignin peroxidase --- p.16 / Chapter 1.5.2 --- Manganese peroxidase --- p.19 / Chapter 1.5.3 --- Laccase --- p.21 / Chapter 1.5.4 --- Biodegradation of PCP and other organopollutants by ligninolytic enzymes --- p.25 / Chapter 1.6 --- Structure and gene regulation --- p.27 / Chapter 1.6.1 --- MnP gene and structure --- p.27 / Chapter 1.6.1.1 --- Structure of MnP --- p.27 / Chapter 1.6.1.2 --- MnP gene regulation --- p.30 / Chapter 1.6.2 --- Laccase gene and structure --- p.31 / Chapter 1.6.2.1 --- Structure of laccase --- p.31 / Chapter 1.6.2.2 --- Laccase gene regulation --- p.32 / Chapter 1.7 --- Pleurotus pulmonarius --- p.36 / Chapter 1.8 --- Aims of study --- p.37 / Chapter 2 --- MATERIALS & METHOD --- p.39 / Chapter 2.1 --- Optimization of PCP induction in broth system --- p.39 / Chapter 2.1.1 --- Specific enzyme assays --- p.41 / Chapter 2.1.1.1 --- Assay for laccase activity --- p.41 / Chapter 2.1.1.2 --- Assay for manganese peroxidase (MnP) activity --- p.41 / Chapter 2.1.1.3 --- Assay for protein assay --- p.41 / Chapter 2.1.2 --- PCP effect on biomass gain --- p.42 / Chapter 2.1.3 --- Extraction of PCP --- p.42 / Chapter 2.1.3.1 --- Preparation of PCP stock solution --- p.43 / Chapter 2.1.3.2 --- Extraction efficiency of PCP --- p.43 / Chapter 2.1.3.3 --- Quantification of PCP by HPLC --- p.43 / Chapter 2.1.3.4 --- Study of PCP degradation pathway using GC-MS --- p.44 / Chapter 2.2 --- Isolation of laccase and manganese peroxidase coding genes --- p.46 / Chapter 2.2.1 --- Preparation of ribonuclease free reagents and apparatus --- p.46 / Chapter 2.2.2 --- Isolation of RNA --- p.46 / Chapter 2.2.3 --- Quantification of total RNA --- p.47 / Chapter 2.2.4 --- First strand cDNA synthesis --- p.47 / Chapter 2.2.5 --- Polymerase Chain Reaction (PCR) --- p.48 / Chapter 2.2.6 --- Gel electrophoresis --- p.50 / Chapter 2.2.7 --- Purification of PCR products --- p.50 / Chapter 2.2.8 --- Preparation of Escherichia coli competent cells --- p.51 / Chapter 2.2.9 --- Ligation and E. coli transformation --- p.51 / Chapter 2.2.10 --- PCR screening of E. coli transformation --- p.52 / Chapter 2.2.11 --- Isolation of recombinant plasmid --- p.52 / Chapter 2.2.12 --- Sequence analysis --- p.53 / Chapter 2.2.13 --- Construction of dendrogram for Pleurotus sp. laccase and manganese peroxidase dendrogram --- p.54 / Chapter 2.2.13.1 --- Dendrogram of laccase genes --- p.55 / Chapter 2.2.13.2 --- Dendrogram of manganese genes --- p.55 / Chapter 2.3 --- Differential regulation profiles of laccase and manganese peroxidase genes --- p.57 / Chapter 2.3.1 --- Time course of the effects of PCP on levels of laccase and manganese peroxidase mRNAs --- p.57 / Chapter 2.3.1.1 --- Isolation of RNA --- p.57 / Chapter 2.3.1.2 --- RT-PCR --- p.57 / Chapter 2.3.2 --- The effect of different stresses --- p.65 / Chapter 2.3.2.1 --- Pollutant removal analysis --- p.66 / Chapter 2.3.2.2 --- Differential gene expression under different stresses --- p.69 / Chapter 2.4 --- Construction of full-length cDNA --- p.69 / Chapter 2.4.1 --- Primer design --- p.69 / Chapter 2.4.2 --- First-strand cDNA synthesis --- p.71 / Chapter 2.4.3 --- RACE PCR reactions --- p.71 / Chapter 2.5 --- Statistical analysis --- p.73 / Chapter 3 --- RESULT --- p.74 / Chapter 3.1 --- Optimization of PCP induction in broth system --- p.74 / Chapter 3.1.1 --- Enzyme Assay --- p.74 / Chapter 3.1.1.1 --- Protein content --- p.74 / Chapter 3.1.1.2 --- Specific laccase activity --- p.74 / Chapter 3.1.1.3 --- Specific MnP activity --- p.76 / Chapter 3.1.1.4 --- Laccase productivity --- p.78 / Chapter 3.1.1.5 --- MnP productivity --- p.78 / Chapter 3.1.2 --- PCP effect on biomass development --- p.80 / Chapter 3.1.3 --- PCP removal --- p.80 / Chapter 3.2 --- isolation of laccase and manganese peroxidase coding genes --- p.83 / Chapter 3.2.1 --- Dendrogram construction for heterologous MnP and laccase coding genes --- p.83 / Chapter 3.2.2 --- Phylogeny of ligninolytic enzyme coding genes of P. pulmonarius --- p.85 / Chapter 3.2.2.1 --- Phylogeny of MnP coding genes --- p.88 / Chapter 3.2.2.2 --- Phylogeny of laccase coding genes --- p.88 / Chapter 3.3 --- differential regulation profiles of laccase and MnP genes --- p.91 / Chapter 3.3.1 --- Time course of the effects of PCP on levels of MnP and laccase mRNAs --- p.91 / Chapter 3.3.1.1 --- Time course of the effects of PCP on levels of MnP mRNAs --- p.91 / Chapter 3.3.1.2 --- Time course of the effects of PCP on levels of laccase mRNAs --- p.97 / Chapter 3.3.2 --- The effects of different stresses and two lignocellulosic substrates --- p.99 / Chapter 3.3.2.1 --- The effect on laccase and MnP enzyme activities --- p.99 / Chapter 3.3.2.1.1 --- Protein content --- p.99 / Chapter 3.3.2.1.2 --- Specific laccase activity --- p.100 / Chapter 3.3.2.1.3 --- Specific MnP activity --- p.102 / Chapter 3.3.2.1.4 --- Dry weight of P. pulmonarius --- p.102 / Chapter 3.3.2.1.5 --- Laccase productivity --- p.105 / Chapter 3.3.2.1.6 --- MnP productivity --- p.105 / Chapter 3.3.2.2 --- Organopollutant removal --- p.107 / Chapter 3.3.2.3 --- Differential gene expression under different stresses --- p.107 / Chapter 3.3.2.3.1 --- The effect on MnP mRNAs --- p.107 / Chapter 3.3.2.3.2 --- The effect on laccase mRNAs --- p.115 / Chapter 3.4 --- Construction of full-length cDNA --- p.116 / Chapter 3.4.1 --- PPMnP5 --- p.117 / Chapter 3.4.2 --- PPlac2 --- p.120 / Chapter 3.4.3 --- PPlac6 --- p.120 / Chapter 4 --- DISCUSSION --- p.123 / Chapter 4.1 --- Optimization of PCP induction in broth system --- p.123 / Chapter 4.2 --- Isolation of MnP and laccase coding genes --- p.126 / Chapter 4.3 --- Differential regulation profiles of MnP and laccase genes --- p.128 / Chapter 4.3.1 --- The effects incubation time and PCP on levels of MnP and laccase mRNAs --- p.128 / Chapter 4.3.1.1 --- MnP --- p.129 / Chapter 4.3.1.2 --- Laccase --- p.129 / Chapter 4.3.2 --- Regulation of MnP and laccase by different substrates --- p.130 / Chapter 4.3.2.1 --- Regulation of MnP and laccase activities --- p.131 / Chapter 4.3.2.2 --- Organopollutant removal --- p.132 / Chapter 4.3.2.3 --- Regulation of MnP coding genes --- p.136 / Chapter 4.3.2.4 --- Regulation of laccase coding genes --- p.137 / Chapter 4.4 --- "Characterization of full length cDNAs of PPMnP5, PPlac2 and PPLAC6" --- p.140 / Chapter 4.4.1 --- PPMnP5 --- p.140 / Chapter 4.4.2 --- PPlac2 and PPlac6 --- p.144 / Chapter 4.4.3 --- Real-time PCR --- p.146 / Chapter 4.4.3.1 --- Methodology for SYBR-Green real-time PCR --- p.146 / Chapter 4.4.3.2 --- Comparison of conventional PCR and real-time PCR --- p.148 / Chapter 4.5 --- APPLICATION AND FURTHER INVESTIGATION --- p.150 / Chapter 5 --- CONCLUSION --- p.152 / Chapter 6 --- REFERENCES --- p.155

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325239
Date January 2005
ContributorsYau, Sze-nga., Chinese University of Hong Kong Graduate School. Division of Environmental Science.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xv, 177 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.003 seconds