Cette thèse s'articule principalement autour de la théorie des codes et des fonctions booléennes liés à la cryptographie. Deux axes sont suivis : la première partie est dédiée à la non-linéarité des fonctions booléennes, alors que la deuxième partie présente des applications en cryptographie d'objets provenant de ces théories. Motivé par la conjecture de Patterson et Wiedemann, nous proposons une généralisation de la construction par réunions d'orbites suivant l'action d'un groupe, où la minimisât!on de l'amplitude spectrale se ramène à deux sous-problèmes que nous étudions : l'estimation de sommes de Gauss et l'estimation de sommes d'exponentielles incomplètes. Plusieurs conditions et pistes de résolution de la conjecture sont alors détaillées. Ce travail nous permet de construire a sympto tique ment des fonctions de non-linéarité plus élevée que la moyenne et nous obtenons de plus, suivant ce principe, un exemple de recollement quadratique hautement non-linéaire proche de la borne de Patterson et Wiedemann en dimension 15. Dans la deuxième partie, nous portons tout d'abord notre attention sur des protocoles cryptographiques dits à faibles ressources. Des fonctions booléennes résistantes à la cryptanalyse différentielle sont utilisées afin de protéger le protocole HB+ d'une attaque par le milieu. À partir d'un deuxième protocole basé sur un principe de bruitage, nous effectuons un parallèle avec la théorie du canal à jarretière de Wyner, ce qui permet d'accroître la sécurité. D'autre part, dans le cadre de l'authentification de données variables dans le temps, une adaptation du cryptosystème de McEliece est détaillée afin de contrôler l'accès aux fonctions de vérification.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00258334 |
Date | 16 November 2007 |
Creators | Bringer, Julien |
Publisher | Université du Sud Toulon Var |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0014 seconds