De nos jours, l'utilisation des drones miniatures à voilure tournante pour des missions d'observation dans des environnements hostiles est en pleine expansion. Ces appareils, grâce à leurs capacités à combiner le vol de translation avec le vol stationnaire, sont en effet bien adaptés aux besoins de ces missions. L'étude présentée dans cette thèse concerne un nouveau concept de drone appelé GLMAV (pour Gun Launched Micro Aerial Vehicle), qui consiste à rendre très rapidement opérationnel un véhicule hybride projectile - drone. La difficulté dans le pilotage de ce type de véhicules est d'assurer de bonnes performances de suivi de trajectoires tout en garantissant une résistance aux perturbations aérodynamiques. Après une étape de modélisation, le coeur de la thèse présente plusieurs stratégies de commande, aussi bien linéaires que non linéaires, permettant la navigation autonome du drone. Plusieurs approches permettant l'estimation et la prise en compte dans la commande des efforts parasites liés aux phénomènes aérodynamiques sont également détaillées. L'efficacité de tous les algorithmes de commande est ensuite illustrée par de nombreuses simulations numériques. Du point de vue pratique, une simple loi de commande ne suffit pas. En effet, des techniques de filtrage particulières ou des aménagements spécifiques doivent être utilisés pour reconstruire l'état du drone. Les performances de l'ensemble de la boucle de commande sont d'abord testées en simulation avant l'implantation sur le prototype du GLMAV développé par l'Institut franco-allemand de recherches de Saint-Louis / Nowadays, the use of rotary-wing MAV for observation missions in hostile environments is constantly growing. These aircrafts, through their ability to perform both translation flights and hover, are indeed well appropriate for these missions. The study presented in this thesis deals with a new MAV concept called GLMAV (for Gun Launched Micro Aerial Vehicle), which consists in getting very quickly up and running a projectile - MAV hybrid vehicle. The difficulty in controlling such vehicles is to ensure good trajectory tracking performances while guaranteeing robustness towards aerodynamic disturbances. After a modelling stage, the heart of the thesis introduces various control strategies, both linear and nonlinear, for the autonomous navigation of the MAV. Several approaches allowing the estimation and the consideration into the control of the parasitic efforts caused by aerodynamic phenomena are also detailed. The effectiveness of the control algorithms is then shown through many numerical simulations. From a practical point of view, having a control law is not enough. Indeed, special filtering techniques or specific equipments have to be used to reconstruct the system state. The performances of the overall control loop are firstly tested in simulation before its implementation on the GLMAV prototype developed by the French-German research Institute of Saint-Louis
Identifer | oai:union.ndltd.org:theses.fr/2013LORR0172 |
Date | 02 December 2013 |
Creators | Drouot, Adrien |
Contributors | Université de Lorraine, Boutayeb, Mohamed, Richard, Édouard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds