We consider a class of control problems governed by a linear parabolic initial-boundary
value problem with linear-quadratic objective and pointwise constraints on the control.
The control system contains different types of perturbations. They appear in the
linear part of the objective functional, in the right hand side of the equation,
in its boundary condition, and in the initial value. Making use of parabolic regularity
in the whole scale of $L^p$ the known Lipschitz stability in the $L^2$-norm
is improved to the supremum-norm.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-199801229 |
Date | 30 October 1998 |
Creators | Tröltzsch, F. |
Contributors | TU Chemnitz, Fakultät für Mathematik |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | application/pdf, application/postscript, text/plain, application/zip |
Page generated in 0.0018 seconds