Return to search

Análise semi-local do método de Gauss-Newton sob uma condição majorante / Semi-local analysis of the Gauss-Newton under a majorant condition

Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-05T14:28:50Z
No. of bitstreams: 2
Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-06T10:38:03Z (GMT) No. of bitstreams: 2
Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-06T10:38:03Z (GMT). No. of bitstreams: 2
Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-12-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation we present a semi-local convergence analysis for the Gauss-Newton
method to solve a special class of systems of non-linear equations, under the hypothesis
that the derivative of the non-linear operator satisfies a majorant condition. The proofs
and conditions of convergence presented in this work are simplified by using a simple
majorant condition. Another tool of demonstration that simplifies our study is to identify
regions where the iteration of Gauss-Newton is “well-defined”. Moreover, special cases
of the general theory are presented as applications. / Nesta dissertação apresentamos uma análise de convergência semi-local do método de
Gauss-Newton para resolver uma classe especial de sistemas de equações não-lineares,
sob a hipótese que a derivada do operador não-linear satisfaz uma condição majorante. As
demonstrações e condições de convergência apresentadas neste trabalho são simplificadas
pelo uso de uma simples condição majorante. Outra ferramenta de demonstração que
simplifica o nosso estudo é a identificação de regiões onde a iteração de Gauss-Newton
está “bem-definida”. Além disso, casos especiais da teoria geral são apresentados como
aplicações.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/4251
Date18 December 2014
CreatorsAguiar, Ademir Alves
ContributorsGonçalves, Max Leandro Nobre, Gonçalves, Max Leandro Nobre, Gonçalves, Douglas Soares, Melo, Jefferson Divino Gonçalves de
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Matemática (IME), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation6600717948137941247, 600, 600, 600, 600, -4268777512335152015, -7090823417984401694, 2075167498588264571

Page generated in 0.0023 seconds