Integration of audio and video signals for automatic speech recognition has become an important field of study. The Audio-Visual Speech Recognition (AVSR) system is known to have accuracy higher than audio-only or visual-only system. The research focused on the visual front end and has been centered around lip segmentation. Experiments performed for lip feature extraction were mainly done in constrained environment with controlled background noise. In this thesis we focus our attention to a database collected in the environment of a moving car which hampered the quality of the imagery.
We first introduce the concept of illumination compensation, where we try to reduce the dependency of light from over- or under-exposed images. As a precursor to lip segmentation, we focus on a robust face detection technique which reaches an accuracy of 95%. We have detailed and compared three different face detection techniques and found a successful way of concatenating them in order to increase the overall accuracy. One of the detection techniques used was the object detection algorithm proposed by Viola-Jones. We have experimented with different color spaces using the Viola-Jones algorithm and have reached interesting conclusions.
Following face detection we implement a lip localization algorithm based on the vertical gradients of hybrid equations of color. Despite the challenging background and image quality, success rate of 88% was achieved for lip segmentation.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1637 |
Date | 01 August 2011 |
Creators | Husain, Benafsh Nadir |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.002 seconds