Return to search

Propriétés physico-chimiques et impact environnemental de liquides ioniques

Les liquides ioniques sont des composés uniquement constitués d'ions souvent volumineux, asymétriques et flexibles. Ils possèdent des températures de fusion basses, typiquement au-dessous de 100°C. Ils sont considérés comme des solvants prometteurs pour une chimie durable du fait, notamment, de leur tension de vapeur négligeable. Ils présentent d'autres propriétés intéressantes : grande stabilité thermique, pression de vapeur quasiment nulle, non-inflammabilité, propriétés modulables par changement de l'anion ou du cation, etc. Ils sont classiquement organisés par familles, en fonction de la structure chimique de leur cation : imidazolium, pyridinium, pyrrolidinium, etc. Leurs domaines d'application sont très variés : synthèse, catalyse, séparation et extraction. Cependant, l'utilisation des liquides ioniques à l'échelle industrielle est encore limitée par manque de connaissances fondamentales et par l'absence de données fiables sur leurs propriétés, leur devenir et leur impact environnementaux. La toxicité des liquides ioniques a récemment été démontrée ainsi qu'une résistance à la biodégradation. Dans ce contexte et en vue du développement à grande échelle de l'utilisation de ces composés, la recherche de liquides ioniques à faible impact environnemental (moins toxiques, facilement biodégradables) devient essentielle. L'introduction dans les chaînes latérales alkyles des imidazolium et pyridinium de groupements fonctionnels oxygenés, qui peuvent être reconnus par des enzymes (ex. esters, éthers, alcools terminaux), a grandement amélioré leur biodégradabilité. En même temps, il est important de garantir que la présence de ces groupements n'affecte pas les propriétés physico-chimiques des liquides ioniques requises pour un usage spécifique dans des procédés chimiques. Dans ce projet de doctorat, nous avons sélectionné divers liquides ioniques basés sur les cations imidazolium, pyridinium, pyrrolidinium et ammonium, avec ou sans groupements fonctionnels (alcool/ester/éther) et avec trois types d'anions, comme cibles d'étude. L'objectif était d'examiner si les modifications de structures peuvent effectivement baisser leur impact environnemental tout en gardant leurs propriétés intéressantes pour des applications industrielles. Dans un premier temps, nous avons étudié plusieurs propriétés physico-chimiques importantes pour des applications ultérieures et/ou indicatrices de leur impact environnemental : les propriétés volumiques, la viscosité, la solubilité de gaz, la solubilité dans l'eau, le coefficient de partage octanol-eau et le coefficient de diffusion dans l'eau. Dans un deuxième temps, nous avons étudié leur impact environnemental par la mesure de la toxicité sur quatre microorganismes différents et l'étude de leur biodégradation en présence de souches pures de bactéries. En complément, nous avons essayé de trouver des modèles basés sur les informations structurales pour estimer certaines propriétés. L'insertion de groupements oxygénés sur la chaîne alkyle des cations ne change pas significativement les propriétés volumiques ; ni le coefficient de diffusion dans l'eau. Les propriétés de solvatation des liquides ioniques basés sur des cations imidazolium et ammonium ne sont pas modifiées significativement, mais celles des pyridinium sont réduites, à cause d'une contribution entropique défavorable à l'énergie de Gibbs de solvatation. La présence de groupements oxygénés dans la chaîne alkyle du cation augmente la viscosité d'un ordre de grandeur comparativement aux liquides ioniques sans groupements oxygénés. Dans le cas de l'anion octylsulfate la viscosité augmente de deux ordres de grandeur. La présence de groupements oxygénés augmente la biodégradabilité des liquides ioniques. La présence de groupements esters rend les liquides ioniques plus sensibles à l' hydrolyse dans les conditions abiotiques et biotiques, toutefois le noyau imidazolium n'en devient pas biodégradable pour autant. L'introduction de groupements oxygénés augmente la solubilité dans l'eau, diminue la valeur du coefficient de partage octanol-eau et entraine une baisse de la toxicité ce qui signifie que ces liquides ioniques présentent un plus faible impact environnemental.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00669538
Date08 June 2011
CreatorsDeng, Yun
PublisherUniversité Blaise Pascal - Clermont-Ferrand II
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds