The main objective in sampling is to select a sample from a population in order to estimate some unknown population parameter, usually a total or a mean of some interesting variable. When the units in the population do not have the same probability of being included in a sample, it is called unequal probability sampling. The inclusion probabilities are usually chosen to be proportional to some auxiliary variable that is known for all units in the population. When unequal probability sampling is applicable, it generally gives much better estimates than sampling with equal probabilities. This thesis consists of six papers that treat unequal probability sampling from a finite population of units. A random sample is selected according to some specified random mechanism called the sampling design. For unequal probability sampling there exist many different sampling designs. The choice of sampling design is important since it determines the properties of the estimator that is used. The main focus of this thesis is on evaluating and comparing different designs. Often it is preferable to select samples of a fixed size and hence the focus is on such designs. It is also important that a design has a simple and efficient implementation in order to be used in practice by statisticians. Some effort has been made to improve the implementation of some designs. In Paper II, two new implementations are presented for the Sampford design. In general a sampling design should also have a high level of randomization. A measure of the level of randomization is entropy. In Paper IV, eight designs are compared with respect to their entropy. A design called adjusted conditional Poisson has maximum entropy, but it is shown that several other designs are very close in terms of entropy. A specific situation called real time sampling is treated in Paper III, where a new design called correlated Poisson sampling is evaluated. In real time sampling the units pass the sampler one by one. Since each unit only passes once, the sampler must directly decide for each unit whether or not it should be sampled. The correlated Poisson design is shown to have much better properties than traditional methods such as Poisson sampling and systematic sampling.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-33701 |
Date | January 2010 |
Creators | Grafström, Anton |
Publisher | Umeå universitet, Institutionen för matematik och matematisk statistik, Umeå : Department of Mathematics and Mathematical Statistics, Umeå University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds