PLAS is a cloud-based software used for planning and scheduling fleets of vehicles for material transport. PLAS consists of two components; the Logistic Flow Solver (LFS) and the Material Transport Scheduler (MTS). Based on transportation requests, the LFS generates a set of logistic flows. The MTS then transforms the logistic flows into tasks that are assigned to the vehicles. The LFS is implemented with Mixed Integer Linear Programming (MILP). Currently, the LFS and the MTS are decoupled from each other and there is information that is not considered in the LFS. Thus, the choice of logistic flows generated with the current formulation may negatively impact the final transport plan. The objective of this thesis is to investigate how the generation of logistic flows can be improved. Two alternative mathematical models for the LFS were developed using MILP formulation. Compared to the current model, more information is taken into account in the two new models. Three different objective functions were considered. Scheduling of the vehicles were modelled as pickup and delivery problems, where pickup and delivery pairs correspond to the generated logistic flows. The models were implemented using Google OR-Tools, an open-source software suite for optimization. The different mathematical formulations were evaluated based on their performance for test problems with different fleet compositions. The results show that problem characteristics influence the performance of the models and that there is no model that gives the best result for every type of problem. Therefore, it is necessary to analyse problem characteristics in order to choose a suitable model for generation of logistic flows. / PLAS är en molnbaserad mjukvara som används för planering och schemaläggning av fordonsflottor för materialtransport. PLAS består av två komponenter; Logistic Flow Solver (LFS) and Material Transport Scheduler (MTS). Baserat på transportbehov genererar LFS ett antal logistikflöden. MTS omvandlar sedan logistikflödena till uppdrag som är tilldelade till fordonen. LFS är implementerad med blandad heltalsprogrammering. För närvarande är LFS och MTS frikopplade från varandra och det finns information som inte tas hänsyn till i LFS. Därför kan valet av logistikflöden genererade med den nuvarande formuleringen negativt påverka den slutliga transportplanen. Målet med detta examensarbete är att undersöka hur genereringen av logistikflöden kan förbättras. Två alternativa matematiska modeller utvecklades med MILP-formulering. Jämfört med den nuvarande modellen, tar de två nya modellerna hänsyn till mer information. Tre olika målfunktioner beaktades. Modellerna implementerades med Google OR-Tools, en öppen programvara för optimering. De matematiska formuleringarna utvärderades baserat på deras prestation på testproblem med olika kompositioner av fordonsflottor. Resultaten visar att problemegenskaper påverkar modellernas prestationer och att det inte finns någon modell som ger bäst resultat för varje problemtyp. Därför är det nödvändigt att analysera problemegenskaper för att kunna välja en lämplig modell för generering av logistikflöden.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-276960 |
Date | January 2020 |
Creators | Ma, Hanna |
Publisher | KTH, Optimeringslära och systemteori |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2020:240 |
Page generated in 0.0026 seconds