Return to search

Les extensions bosoniques et fermioniques de l'équation Benjamin-Ono : supersymétriques et autres

L'équation Korteweg de Vries (KdV) est un système integrable, car elle possède une infinité de lois de conservation en involution. Cette équation admet une classe d'extensions intégrables bosoniques ou fermioniques. Toutes ces extensions sont supersymétriques, soit à une ou deux supersymétries, à l'exception d'une extension fermio-nique et de sa généralisation à deux champs anti-commutants. Maintenant, il existe un système integrable semblable à l'équation KdV contenant un opérateur intégral dans l'équation d'évolution : l'équation Benjamin-Ono (B-O). On peut même relier via un développement en pôles l'équation B-O à un autre système integrable : le modèle de Calogero-Moser-Sutherland (CMS). Ce mémoire montre que l'on n'obtient que des extensions bosoniques et supersymétriques à l'équation B-O. Pour ces extensions, on espérait les relier à la version supersymétrique de CMS (sCMS). Finalement, nos extensions sont reliées au modèle CMS lui-même, car celles-ci sont bosoniques.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/21876
Date17 April 2018
CreatorsLandry, Alexandre
ContributorsMathieu, Pierre
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Formatvi, 90 f., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0017 seconds