Return to search

The Atmosphere of Mira Variables: A View With the Hubble Space Telescope

Ultraviolet spectra obtained with Hubble Space Telescope (HST) of two Mira-type variable stars, R Leo and R Hya, are presented, along with analysis providing information on their outer atmospheres. These high-dispersion spectra were taken with the Goddard High Resolution Spectrograph (HRS) in two spectral regions: 2320-2368 Å to record the C II] (UV0.01) multiplet and 2785-2835 Å to obtain the Mg II h and k lines. The R Hya spectrum was obtained at visual light phase 0.26 and shows a Mg II spectrum that is very clean, showing clear evidence for the overlying circumstellar absorption from Fe I (UV3) and Mn I (UV1) over the k line. The fluoresced Fe I (UV44) feature at 2824 Å is plainly visible in this spectrum, whereas past International Ultraviolet Explorer (IUE) observations of Mira variables at high dispersion were unable to record this feature. Remarkably, the newly identified fluoresced Fe I (UV45) feature near 2807 Å is seen in this spectrum. Until now, this line has been seen only in cool carbon stars with HST/HRS. This line is pumped by the thin C II] (UV0.01) emission line at 2325.5 Å. Two of the strongest C II] (UV0.01) lines near 2325 Å are plainly seen in this spectrum. This region of the spectrum, however, is dominated by the Si II] (UV0.01) line near 2335 Å, in contrast to that observed in the carbon stars and the non-Mira oxygen-rich red giant stars. Very weak Mg II lines are seen in the R Leo spectrum at phase 0.12. At this phase, these lines are typically absent in IUE spectra. Velocity shifts of emission features in the UV spectra of Mira variables are consistent with previously published hydrodynamic models of these stars. These velocities indicate, however, that the C II] (UV0.01) emission lines are not formed in the same atmospheric layers as the Mg II emission. The electron density deduced from the C II] (UV0.01) multiplet is ∼109 cm-3. Finally, the temperature-density structure of the semi-regular variable carbon stars is similar to the oxygen-rich Mira variables-both are hydrodynamic in nature; however, the carbon stars macroscopic velocity fields are not identical to the Mira stars in the atmosphere layers between the Mg II emission region and the circumstellar shell.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-15926
Date20 June 2000
CreatorsLuttermoser, Donald G.
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0022 seconds