Recurrent Neural Networks (RNNs) are pivotal in deep learning for time series prediction, but they suffer from 'exploding values' and 'gradient decay,' particularly when learning temporally distant interactions. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) have addressed these issues to an extent, but the precise mitigating mechanisms remain unclear. Moreover, the success of feedforward neural networks in time series tasks using an 'attention mechanism' raises questions about the solutions offered by LSTMs and GRUs. This study explores an alternative explanation for the challenges faced by RNNs in learning long-range correlations in the input data. Could the issue lie in the movement of the representations - how hidden nodes store and process information - across nodes instead of localization? Evidence presented suggests that RNNs can indeed possess "moving representations," with certain training conditions reducing this movement. These findings point towards the necessity of further research on localizing representations.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:du-46777 |
Date | January 2023 |
Creators | Najam, Asadullah |
Publisher | Högskolan Dalarna, Institutionen för information och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds