Neste trabalho estudamos a existência e a multiplicidade de soluções clássicas positivas para uma classe de problemas de quarta-ordem sob a condição de fronteira de Navier, relacionando o número de soluções com a topologia do domínio, mais precisamente, com sua categoria de Lusternik-Schnirelman. Introduzimos também uma noção de regiões crítica e não-crítica associadas a um de nossos problemas, a fim de garantir condições para existência de solução / In this work we study the existence and multiplicity of positive classical solutions for a class of fourth-order problems under Navier boundary condition, relating the number of solutions to the domain topology, more specifically, to its Lusternik-Schnirelman category. We also introduce the notion of critical and noncritical regions related to one of our problems, in order to ensure conditions to existence of solutions
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-23092014-165650 |
Date | 18 June 2014 |
Creators | Jéssyca Lange Ferreira Melo |
Contributors | Ederson Moreira dos Santos, Marcelo Fernandes Furtado, Francisco Odair Vieira de Paiva, Sérgio Henrique Monari Soares, Marco Aurélio Soares Souto |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds