La spasticité est l’une des nombreuses complications motrices qui peuvent apparaître après une lésion de la moelle épinière. Elle est présente dans 75 % des patients médullo-lésés et se caractérise par une hypertonie musculaire en réponse à un réflexe d’étirement. Les traitements actuels, qui ciblent les symptômes et non les causes de la spasticité, sont peu efficaces. Bien que les mécanismes neurologiques qui sous-tendent la spasticité soient complexes et restent en grande partie méconnus, un certain consensus se dégage sur le fait qu’elle est associée à une hyperexcitabilité intrinsèque des motoneurones et à une levée de l’inhibition des réflexes spinaux. L’hyperexcitabilité motoneuronale se manifeste par une décharge soutenue de potentiels de plateau et résulte en partie d’une augmentation des courants entrants persistants sodiques (INaP). La désinhibition découle, en partie, d’une baisse de l’expression des cotransporteurs potassium-chlorure de type 2 (KCC2) à la membrane des motoneurones, modifiant ainsi le gradient électrochimique des ions Cl- et donnant un caractère excitateur aux deux principaux neurotransmetteurs inhibiteurs que sont le GABA et la glycine. Néanmoins, les mécanismes à l’origine des dérégulations du courant INaP et des co-transporteurs KCC2 ne sont toujours pas élucidés. / Spasticity is commonly caused by several pathologies and specifically after a spinal cord injury (SCI). Spasticity is usually associated with hypertonia, clonus, muscle spasm and pain. The present thesis aims to identify the upstream mechanism in the pathophysiology of spasticity Calpain, a calcium-activated cysteine protease, has been shown to participate in the development of the inflammatory processes after SCI. Of special interest, some determinants governing the inactivation of sodium (Na+) channels are sensitive to proteases and their proteolytic cleavage prevents inactivation of Na+ channels. As a result, INaP is strongly increased. It is worth mentioning that the C-terminal domain of KCC2 is also sensitive to proteases which alter KCC2 ability to extrude Cl- ions. Among the different proteases, calpains are able to truncate both Na+ channels and KCC2 transporters. This led us to consider the exciting possibility that a proteolytic cleavage of both Na+ channels and KCC2 by calpains could compose an upstream inflammatory mechanism contributing to the development of spasticity after SCI. My thesis demonstrates that the cleavage of Na+ channels and KCC2 by calpain after SCI, is responsible for the upregulation of INaP and disinhibition of motoneurons, that both act synergistically to generate spasticity. Calpain inhibition by MDL28170 reduced the cleavage of both Na+channels and KCC2 associated with a respective downregulation of INaP, hyperpolarizing shift of the EIPSP, and an alleviation of spasticity. The thesis represents a significant breakthrough by opening novel perspectives to develop therapies.
Identifer | oai:union.ndltd.org:theses.fr/2015AIXM5059 |
Date | 14 December 2015 |
Creators | Plantier, Vanessa |
Contributors | Aix-Marseille, Brocard, Frédéric, Vinay, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds