• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Persistent and transient Na⁺ currents in hippocampal CA1 pyramidal neurons

Park, Yul Young 13 October 2011 (has links)
The biophysical properties and distribution of voltage gated ion channels shape the spatio-temporal pattern of synaptic inputs and determine the input-output properties of the neuron. Of the various voltage-gated ion channels, persistent Na⁺ current (INaP) is of interest because of its activation near rest, slow inactivation kinetics, and consequent effects on excitability. Overshadowed by transient Na⁺ current (INaT) of large amplitude and fast inactivation, various quantitative characterizations of INaP have yet to provide a clear understanding of their role in neuronal excitability. We addressed this question using quantitative electrophysiology to compare somatic INaP and INaT in 4–7 week old Sprague-Dawley rat hippocampal CA1 pyramidal neurons. INaP was evoked with 0.4 mV/ms ramp voltage commands and INaT with step commands in hippocampal neurons from in vitro brain slices utilizing nucleated patch-clamp recording. INaP was found to have a density of 1.4 ± 0.7 pA/pF in the soma. Compared to INaT, it has a much smaller amplitude (2.38% of INaT) and distinct voltage dependence of activation (16.7 mV lower half maximal activation voltage and 41.3% smaller slope factor than those of INaT). The quantitative measurement of INaT gave the activation time constant ([tau]m) of 22.2 ± 2.3 [mu]s at 40 mV. Hexanol, which has anesthetic effects, was shown to preferentially block INaP compared to INaT with a significant voltage threshold elevation (4.6 ± 0.7 mV) and delayed 1st spike latency (221 ± 54.6 ms) suggesting reduced neuronal excitability. The number of spikes evoked by either given step current injections or [alpha]-EPSP integration was also significantly decreased. The differential blocking of INaP by halothane, a popularly used volatile anesthetic, further supports the critical role of INaP in setting voltage threshold. Taken together, the presence of INaP in the soma demonstrates an intrinsic mechanism utilized by hippocampal CA1 pyramidal neurons to regulate axonal spike initiation through different biophysical properties of the Na⁺ channel. Furthermore, INaP becomes an interesting target of intrinsic plasticity because of its profound effect on the input-output function of the neuron. / text
2

Le courant sodique persistant dans le réseau locomoteur du rat nouveau-né : sa contribution dans l'émergence des activités pacemakers et du rythme locomoteur / Persistent sodium current in the locomotor network of new born rats : its contribution to pacemaker properties and locomotor rhythm

Tazerart, Sabrina 20 January 2011 (has links)
La locomotion se définit par des mouvements répétés et coordonnés des membres droits et gauches et des muscles antagonistes d’une même articulation. L’activité locomotrice des rongeurs est générée par des groupes de neurones localisés dans la partie antérieure de l’élargissement lombaire; ce réseau de cellules est appelé Central Pattern Generator (CPG). Au cours de cette thèse, les études entreprises chez le rat nouveau-né ont eu pour but d’étudier les mécanismes cellulaires impliqués dans la genèse du rythme locomoteur. Le courant sodique persistant (INaP) joue un rôle important dans la genèse d’activités rythmiques de plusieurs structures supraspinales et notamment celles impliquées dans la mastication et la respiration. Curieusement, son existence et son implication dans la genèse d’activités rythmiques dans les structures du CPG locomoteur spinal n’ont jamais été abordées. A l’aide d’études électrophysiologiques, la thèse démontre l’existence de INaP et le caractérise pour la première fois au sein du CPG locomoteur. Ce courant est indispensable à la genèse du rythme locomoteur et joue un rôle fondamental dans l’émergence d’activités pacemakers au sein du CPG. Ces activités pacemakers émergent dans un contexte physiologique où des fluctuations dans la composition ionique du milieu extracellulaire interviennent au cours d’une activité locomotrice. L’ensemble de ces données suggère que le « cœur » du générateur de rythme pourrait être composé d’interneurones présentant une activité pacemaker dépendante de INaP dont la modulation pourrait être un élément fondamental à la fois dans le déclenchement et la modulation de l’activité locomotrice. / Identification of the cellular mechanisms underlying the generation of the locomotor rhythm is of longstanding interest to physiologists. Hindlimb locomotor movements are generated by lumbar neuronal networks, referred to as central pattern generators (CPG). Although rhythm generation mechanisms within the CNS can vary, the activation of a subthreshold depolarizing conductance is always needed to start the firing of individual neurons. Among various subthreshold membrane conductances, the persistent sodium current (INaP) is involved in rhythmic activity of numerous supraspinal neurons such as those involved in the generation of masticatory and respiratory rhythm. The thesis was aimed at identifying and characterizing INaP in the neonatal rodent locomotor CPG, determining its importance in shaping neuronal firing properties and its role in the operation of the locomotor circuitry. Using electrophysiological studies the thesis has characterized INaP for the first time in the locomotor CPG. This current is essential to the generation of the locomotor rhythm and plays a fundamental role in the emergence of pacemaker activity within the CPG. These pacemaker activities emerge in a physiological context in which fluctuations in the ionic composition of the extracellular environment occur during locomotion. This study provides evidence that INaP generates pacemaker activities in CPG interneurons and new insights into the operation of the locomotor network with a critical implication of INaP in stabilizing the locomotor pattern.
3

Propriétés de codage des cellules granulaires du gyrus denté dans un modèle d' épilepsie du lobe temporal / Coding properties of dentale granule cells in a model of temporal lobe epilepsy

Artinian, Julien 07 December 2012 (has links)
Le gyrus denté occupe une position clé au sein du lobe temporal des mammifères en constituant le point de contrôle entre le système néocortical et le système hippocampique. Considéré comme la porte de l'hippocampe, le gyrus denté filtre les activités excitatrices en provenance du cortex entorhinal grâce à la décharge éparse des cellules granulaires. Ce type de codage neuronal lui confère également un rôle déterminant dans les mécanismes de l'apprentissage et de la mémoire lors de la distinction d'évènements similaires mais différents, en permettant la décorrélation des patrons d'activité corticale. Grâce à un ensemble de propriétés structurales et fonctionnelles, les cellules granulaires du gyrus denté génèrent des évènements synaptiques extrêmement rapides restreignant leur fenêtre temporelle d'intégration et leur permettant de jouer le rôle de détecteurs de coïncidence. Au cours d'une épilepsie du lobe temporal (ELT), l'hippocampe présente d'importantes altérations de codage neuronal qui pourraient participer aux troubles cognitifs décrits chez les patients et les modèles animaux. Dans ces conditions pathologiques, les axones des cellules granulaires du gyrus denté (les fibres moussues) bourgeonnent et établissent des synapses aberrantes au niveau d'autres cellules granulaires, créant ainsi un puissant réseau excitateur récurrent. Ces fibres moussues récurrentes convertissent la nature de la transmission glutamatergique car elles opèrent via des récepteurs kaïnate générant des potentiels post-synaptiques à cinétique lente, absents en condition contrôle. / The dentate gyrus plays a major role at the gate of the hippocampus, filtering incoming information from the entorhinal cortex. A fundamental coding property of dentate granule cells (DGCs) is their sparse firing. Indeed, they behave as a coincidence detector due to the fast kinetics of excitatory synaptic events restricting integration of afferent inputs to a narrow time window. In temporal lobe epilepsy (TLE), the hippocampus displays important coding alterations that may play a role in cognitive impairments described in patients and animal models. However, the cellular mechanisms remain poorly understood. In animal models of TLE and human patients, neuronal tissue undergoes major reorganization; some neurons die whereas others, which are severed in their inputs or outputs, sprout and form novel aberrant connections. This phenomenon, called reactive plasticity, is well documented in the dentate gyrus where DGC axons (the mossy fibres) sprout and create a powerful excitatory network between DGCs. We recently showed that in addition to the axonal rewiring, recurrent mossy fibres convert the nature of glutamatergic transmission in the dentate gyrus because they operate via long-lasting kainate receptor (KAR)-mediated EPSPs (EPSPKA) not present in the naive condition.
4

La spasticité après lésion de la moelle épinière : Identification des mécanismes moléculaires et ioniques sous-jacents / Spasticity after spinal cord injury : ionic and molecular mechanisms implicated

Plantier, Vanessa 14 December 2015 (has links)
La spasticité est l’une des nombreuses complications motrices qui peuvent apparaître après une lésion de la moelle épinière. Elle est présente dans 75 % des patients médullo-lésés et se caractérise par une hypertonie musculaire en réponse à un réflexe d’étirement. Les traitements actuels, qui ciblent les symptômes et non les causes de la spasticité, sont peu efficaces. Bien que les mécanismes neurologiques qui sous-tendent la spasticité soient complexes et restent en grande partie méconnus, un certain consensus se dégage sur le fait qu’elle est associée à une hyperexcitabilité intrinsèque des motoneurones et à une levée de l’inhibition des réflexes spinaux. L’hyperexcitabilité motoneuronale se manifeste par une décharge soutenue de potentiels de plateau et résulte en partie d’une augmentation des courants entrants persistants sodiques (INaP). La désinhibition découle, en partie, d’une baisse de l’expression des cotransporteurs potassium-chlorure de type 2 (KCC2) à la membrane des motoneurones, modifiant ainsi le gradient électrochimique des ions Cl- et donnant un caractère excitateur aux deux principaux neurotransmetteurs inhibiteurs que sont le GABA et la glycine. Néanmoins, les mécanismes à l’origine des dérégulations du courant INaP et des co-transporteurs KCC2 ne sont toujours pas élucidés. / Spasticity is commonly caused by several pathologies and specifically after a spinal cord injury (SCI). Spasticity is usually associated with hypertonia, clonus, muscle spasm and pain. The present thesis aims to identify the upstream mechanism in the pathophysiology of spasticity Calpain, a calcium-activated cysteine protease, has been shown to participate in the development of the inflammatory processes after SCI. Of special interest, some determinants governing the inactivation of sodium (Na+) channels are sensitive to proteases and their proteolytic cleavage prevents inactivation of Na+ channels. As a result, INaP is strongly increased. It is worth mentioning that the C-terminal domain of KCC2 is also sensitive to proteases which alter KCC2 ability to extrude Cl- ions. Among the different proteases, calpains are able to truncate both Na+ channels and KCC2 transporters. This led us to consider the exciting possibility that a proteolytic cleavage of both Na+ channels and KCC2 by calpains could compose an upstream inflammatory mechanism contributing to the development of spasticity after SCI. My thesis demonstrates that the cleavage of Na+ channels and KCC2 by calpain after SCI, is responsible for the upregulation of INaP and disinhibition of motoneurons, that both act synergistically to generate spasticity. Calpain inhibition by MDL28170 reduced the cleavage of both Na+channels and KCC2 associated with a respective downregulation of INaP, hyperpolarizing shift of the EIPSP, and an alleviation of spasticity. The thesis represents a significant breakthrough by opening novel perspectives to develop therapies.

Page generated in 0.0916 seconds