Return to search

Optimisation des structures composites: Une analyse de sensibilité géométrique et topologique

Cette thèse est consacrée principalement à l'étude de deux problèmes, à savoir la conception optimale des drapages composites et l'analyse de sensibilité topologique élastostatique anisotrope. En ce qui concerne la conception des composites, nous considérons des structures de masse minimale soumises à des contraintes de raideur et flambage, où les variables de conception sont la forme de chaque pli et la séquence d'empilement. En effet, le drapage composite est constitué d'une collection de plis orthotropes dont les axes principaux peuvent prendre quatre orientations différentes: 0º , 90º , 45º , -45º. La manière dont ces orientations sont disposées dans le composite définit la séquence d'empilement. Le comportement physique du composite est modélisé par le système d'équations des plaques linéarisées de von Kármán. Afin d'optimiser les deux variables de conception, nous nous appuyons sur une technique de décomposition qui regroupe les contraintes dans une seule fonction qui dépend des formes de chaque pli uniquement. Grâce à cette approche, un problème équivalent d'optimisation à deux niveaux est établi de manière rigoureuse. Le premier niveau, aussi appelé inférieur, représente l'optimisation combinatoire de la séquence d'empilement tandis que le deuxième niveau, ou niveau supérieur, représente l'optimisation de la forme de chaque pli. Nous proposons ainsi pour le niveau inférieur une méthode combinatoire convexe, alors que pour le niveau supérieur une méthode des lignes de niveaux couplé à la notion du gradient de forme. Un cas test aéronautique est détaillé pour diverses contraintes, à savoir la compliance, le facteur de réserve et la première charge de flambement. Ensuite, nous étudions la dérivée topologique des fonctions coût qui dépendent de la déformation et du déplacement (en supposant un comportement du matériau élastique linéaire) dans un cadre 2D et 3D anisotrope général, c'est à dire où à la fois le milieu et l'inclusion peuvent avoir des propriétés élastiques arbitraires. Le développement asymptotique de la fonction coût par rapport à l'inclusion est mathématiquement justifié pour une large classe des critères et des procédures de calcul sont plus tard discutées à la vue de plusieurs exemples numériques 2D et 3D. Finalement, en dehors des sujets mentionnés précédemment, nous traitons en outre deux problèmes de conception optimale. Premièrement, nous considérons la meilleure répartition de plusieurs matériaux élastiques dans un domaine fixe, où l'interface peut être nette ou lisse. Afin d'optimiser à la fois la géométrie et la topologie du mélange, nous nous appuyons sur la méthode des lignes de niveau et la fonction distance signée pour la description des interfaces entre les différentes phases. Deuxièmement, dans le cadre de l'étude des dispositifs énergétiques complémentaires aux moteurs d'avions, nous cherchons à trouver la micro-structure optimale d'une pile à combustible micro-tubulaire par une technique d'homogénéisation inverse. Le motif périodique trouvé vise à maximiser la surface d'échange électrochimique soumis à une contrainte de perte de charge et une contrainte de perméabilité. L'agencement optimal liquide/solide découle de l'application de la méthode de lignes de niveau au problème de cellule correspondant.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-01005520
Date11 June 2014
CreatorsDelgado, Gabriel
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0028 seconds