Return to search

Influence of the nonlinear behaviour of soft soils on strong ground motions / Influence du comportement non-linéaire des sols sur les mouvements sismiques forts

Le comportement nonlinéaire des sols observé lors des mouvements sismiques forts est maintenant bien admis et le déploiement des puits accélérométriques a permis des analyses détaillées de la propagation des ondes ainsi qu’une évaluation quantitative des paramètres physiques tels que la vitesse de cisaillement et de compression des ondes et les facteurs d’amortissements en fonction de la déformation. En dépit du nombre grandissant d’études sur ce phénomène, sa connaissance est encore récente et les recherches sur les données de puits accélérométriques restent une étape importante vers la compréhension du comportement complexe in-situ des sédiments soumis à des mouvements sismiques forts.L’objectif de ces travaux est triple. Premièrement, un code d’inversion par algorithme génétique est développé afin d’inverser des données de puits accélérométriques via la théorie des matrices de propagation de Thomson-Haskell. Cette technique nous permet dans un premier temps de valider la structure en une dimension (1D) (e.g., vitesse des ondes de cisaillement, facteurs d’ amortissements) d’un puits accélérométrique dans le domaine linéaire et dans un second temps de mettre en évidence de manière quantitative le comportement nonlinéaire des sédiments lors du séisme de Fukuoka, 2005, Japon. Deuxièmement, les résultats de l’inversion sont utilisés pour tester des lois de comportement simples et avancées en utilisant la Méthode des éléments Finis. Les résultats montrent clairement que l’hypothèse bi-linéaire de la loi de comportement simple produit des séries temporelles non réalistes en vitesse et en accélération. L’utilisation d’une loi de comportement avancée mène à de meilleurs résultats, cependant, le nombre de paramètres ajustables pour obtenir des résultats consistants avec l’observation est un obstable inévitable. Troisièmement, afin d’étendre l’étude des effets de site à des dimensions supérieures, des codes 2D et 3D de la Méthode en éléments Spectraux sont développés et validés en comparant leurs résultats dans le domaine linéaire avec ceux obtenus théoriquement ou via d’autres méthodes numériques. / Nonlinear behavior of soft soils observed during strong ground motions isnow well established and the deployment of vertical arrays (i.e., boreholestations) has contributed to detailed wave propagation analyses and the assessmentfor quantitative physical parameters such as shear-wave velocity,pressure-wave velocity and damping factors with respect to shear strain levels.Despite the growing number of studies on this phenomena, its knowledgeis still recent and research on borehole station data remains an importantstep toward the understanding of the complex in-situ behavior of soft sedimentssubjected to strong ground motions.The purpose of this work is threefold. First, an inversion code by geneticalgorithm is developed in order to inverse borehole stations data viathe Thomson-Haskell propagator matrix method. This technique allows usto validate the one-dimensional (1D) structure (e.g., shear-wave velocity,damping factors) of a borehole in the linear elastic domain and to showquantitative evidence of the nonlinear behavior of the soft sediments duringthe 2005 Fukuoka Prefecture western offshore earthquake, Japan. Second,the results of the inversion are used in order to test simple and advancedconstitutive laws using the Finite Elements Method. The results clearlyshow that the bi-linear assumption of the simple constitutive law producesunrealistic velocity and acceleration time histories. The use of the advancedconstitutive law leads to better results, however, the number of parametersto be tuned in order to obtain results consistent with the observation is anunavoidable obstacle. Third, in order to extend the study of site effects tohigher dimensions, 2D and 3D codes of the very efficient Spectral ElementsMethod are developed and validated by comparing their results in the lineardomain with those obtained theoretically or with other numerical methods.

Identiferoai:union.ndltd.org:theses.fr/2010ECAP0013
Date07 June 2010
CreatorsMartin, Florent de
ContributorsChâtenay-Malabry, Ecole centrale de Paris, Modaressi, Arézou, Kawase, Hiroshi
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds