La thèse porte sur le développement d'algorithmes d'estimation rapides pour l'analyse modale de signaux multidimensionnels (R-D) présentant des problèmes de résolution et de complexité numérique. Un signal multidimensionnel de dimension R est la superposition de produits de R sinusoïdes. L'application visée est la spectroscopie RMN.Dans un premier temps, après un état de l'art des méthodes d'estimation dites « algébriques », nous proposons une méthode paramétrique basée sur les tenseurs. Celle-ci utilise le treillis multidimensionnel du tenseur du signal R-D et exploite la structure des vecteurs propres du sous-espace signal obtenus en utilisant la décomposition en valeurs singulières d'ordre supérieur. Contrairement à la plupart des approches tensorielles, la méthode proposée permet d'éviter la phase d'appariement des coordonnées des modes dans chacune des dimensions ou d'une diagonalisation conjointe. Dans un deuxième temps, le problème d'estimation modale multidimensionnelle est présenté comme un problème d'approximation parcimonieuse dans lequel le dictionnaire est obtenu par la discrétisation de fonctions exponentielles complexes. Afin d'atteindre une bonne résolution spectrale, il est nécessaire de choisir une grille très fine, ce qui conduit à la manipulation d'un dictionnaire de grande taille avec tous les problèmes calculatoires sous-jacents. Nous proposons alors une méthode originale qui consiste à combiner une approximation parcimonieuse et une approche multigrille sur plusieurs niveaux de résolution. L'approche est validée au travers de plusieurs exemples 1-D et 2-D. En outre, une étude sur l'influence du choix du dictionnaire initial sur la convergence est également menée. Les méthodes développées sont ensuite appliquées à l'estimation des paramètres de signaux de spectroscopie RMN 1-D et 2-D. Afin de réduire le coût de calcul dans le cas de signaux bidimensionnels de grande taille, nous proposons également une approche exploitant la notion de parcimonie simultanée, pour estimer les coordonnées des modes sur chacune des dimensions. La procédure consiste à effectuer deux approximations parcimonieuses 1-D suivies d'une phase de reformation des paires de modes 2-D / This thesis aims at the developpement of modal analysis algorithms for multidimensional signals (R-D) presenting resolution and numerical complexity problems. A multidimensional signal of dimension R is the superimposition of products of R monodimensional sinusoids. The intended application is NMR spectroscopy. Firstly, after a state-of-the-art on the so-called ''algebraic'' estimation methods, we propose a parametric method based on tensors. It uses the multidimensional tensor lattice of the R-D modal signal and exploits the eigenvectors structure of the signal subspace obtained using a higher-order singular value decomposition (HOSVD). Unlike most tensor-based eigenvalue approaches, modes estimated by the proposed method are automatically paired, thus it avoids a separate pairing step and joint diagonalization. Secondly, the multidimensional modal estimation problem is formulated as a sparse approximation problem in which the dictionary is obtained by the discretization of complex exponential functions. To achieve good spectral resolution, it is necessary to choose a very fine grid, which leads to handling a large dictionary with all the underlying computational problems. Hence, we propose a novel method that consists in combining a sparse approximation and a multigrid approach on several levels of resolution. The approach is demonstrated using several 1-D and 2-D examples. In addition, the influence of the initial dictionary on the algorithm convergence is also studied. The developed methods are then applied to estimate 1-D and 2-D NMR signal parameters. To reduce the computation cost in the case of large bidimensional signals, we also propose an approach exploiting the simultaneous sparsity principle to estimate the coordinates of the modes on each dimension. The procedure involves two 1-D sparse approximations followed by a 2-D modes painring step.
Identifer | oai:union.ndltd.org:theses.fr/2012LORR0169 |
Date | 27 November 2012 |
Creators | Sahnoun, Souleymen |
Contributors | Université de Lorraine, Brie, David, Djermoune, El-Hadi |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds