Return to search

Imputação múltipla: comparação e eficiência em experimentos multiambientais / Multiple Imputations: comparison and efficiency of multi-environmental trials

Em experimentos de genótipos ambiente são comuns à presença de valores ausentes, devido à quantidade insuficiente de genótipos para aplicação dificultando, por exemplo, o processo de recomendação de genótipos mais produtivos, pois para a aplicação da maioria das técnicas estatísticas multivariadas exigem uma matriz de dados completa. Desta forma, aplicam-se métodos que estimam os valores ausentes a partir dos dados disponíveis conhecidos como imputação de dados (simples e múltiplas), levando em consideração o padrão e o mecanismo de dados ausentes. O objetivo deste trabalho é avaliar a eficiência da imputação múltipla livre da distribuição (IMLD) (BERGAMO et al., 2008; BERGAMO, 2007) comparando-a com o método de imputação múltipla com Monte Carlo via cadeia de Markov (IMMCMC), na imputação de unidades ausentes presentes em experimentos de interação genótipo (25) ambiente (7). Estes dados são provenientes de um experimento aleatorizado em blocos com a cultura de Eucaluptus grandis (LAVORANTI, 2003), os quais foram feitas retiradas de porcentagens aleatoriamente (10%, 20%, 30%) e posteriormente imputadas pelos métodos considerados. Os resultados obtidos por cada método mostraram que, a eficiência relativa em ambas as porcentagens manteve-se acima de 90%, sendo menor para o ambiente (4) quando imputado com a IMLD. Para a medida geral de exatidão, a medida que ocorreu acréscimo de dados em falta, foi maior ao imputar os valores ausentes com a IMMCMC, já para o método IMLD estes valores variaram sendo menor a 20% de retirada aleatória. Dentre os resultados encontrados, é de suma importância considerar o fato de que o método IMMCMC considera a suposição de normalidade, já o método IMLD leva vantagem sobre este ponto, pois não considera restrição alguma sobre a distribuição dos dados nem sobre os mecanismos e padrões de ausência. / In trials of genotypes by environment, the presence of absent values is common, due to the quantity of insufficiency of genotype application, making difficult for example, the process of recommendation of more productive genotypes, because for the application of the majority of the multivariate statistical techniques, a complete data matrix is required. Thus, methods that estimate the absent values from available data, known as imputation of data (simple and multiple) are applied, taking into consideration standards and mechanisms of absent data. The goal of this study is to evaluate the efficiency of multiple imputations free of distributions (IMLD) (BERGAMO et al., 2008; BERGAMO, 2007), compared with the Monte Carlo via Markov chain method of multiple imputation (IMMCMC), in the absent units present in trials of genotype interaction (25)environment (7). This data is provisional of random tests in blocks with Eucaluptus grandis cultures (LAVORANTI, 2003), of which random percentages of withdrawals (10%, 20%, 30%) were performed, with posterior imputation of the considered methods. The results obtained for each method show that, the relative efficiency in both percentages were maintained above 90%, being less for environmental (4) when imputed with an IMLD. The general measure of exactness, the measures where higher absent data occurred, was larger when absent values with an IMMCMC was imputed, as for the IMLD method, the varied absent values were lower at 20% for random withdrawals. Among results found, it is of sum importance to take into consideration the fact that the IMMCMC method considers it to be an assumption of normality, as for the IMLD method, it does not consider any restriction on the distribution of data, not on mechanisms and absent standards, which is an advantage on imputations.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-08082012-143901
Date19 July 2012
CreatorsMaria Joseane Cruz da Silva
ContributorsCarlos Tadeu dos Santos Dias, Antonio Carlos Simões Pião, Sonia Maria de Stefano Piedade
PublisherUniversidade de São Paulo, Agronomia (Estatística e Experimentação Agronômica), USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds