Return to search

Contribution aux équations aux dérivées partielles non linéaires et non locales et application au trafic routier / Contribution to partial differential non linear and non local equations and application to traffic flow

Cette thèse porte sur la modélisation, l’analyse et l’analyse numérique des équations aux dérivées partielles non-linéaires et non-locales avec des applications au trafic routier. Le trafic routier peut être modélisé à des différentes échelles. En particulier, on peut considérer l’échelle microscopique qui décrit la dynamique de chaque véhicule individuellement et l’échelle macroscopique qui voit le trafic comme un fluide et qui décrit le trafic en utilisant des quantités macroscopiques comme la densité des véhicules et la vitesse moyenne. Dans cette thèse, en utilisant la théorie des solutions de viscosité, on fait le passage entre les modèles microscopiques et les modèles macroscopiques. L’intérêt de ce passage est que les modèles microscopiques sont plus intuitifs et faciles à manipuler pour simuler des situations particulières (bifurcations, feux tricolores,...) mais ils ne sont pas adaptés à des grosses simulations (pour simuler le trafic dans toute une ville par exemple). Au contraire, les modèles macroscopiques sont moins évidents à modifier (pour simuler une situation particulière) mais ils peuvent être utilisés pour des simulations à grande échelle. L’idée est donc de trouver le modèle macroscopique équivalent à un modèle microscopique qui décrit un scénario précis (une jonction, une bifurcation, des différents types de conducteurs, une zone scolaire,...). La première partie de cette thèse contient un résultat d’homogénéisation et d’homogénéisation numérique pour un modèle microscopique avec différents types de conducteurs. Dans une seconde partie, on obtient des résultats d’homogénéisation et d’homogénéisation numérique pour des modèles microscopiques con- tenant une perturbation locale (ralentisseur, zone scolaire,...). Finalement, on présente un résultat d’homogénéisation dans le cadre d’une bifurcation. / This work deals with the modelling, analysis and numerical analysis of non- linear and non-local partial differential equations and their application to traffic flow. Traffic can be simulated at different scales. Mainly, we have the microscopic scale which describes the dynamics of each of the vehicles individually and the macroscopic scale which describes the traffic as a fluid using macroscopic quantities such as the density of vehicles and the average speed. In this PhD thesis, using the theory of viscosity solutions, we derive macroscopic models from microscopic models. The interest of these results is that microscopic models are very intuitive and easy to manipulate to describe a particular situation (bifurcation, a traffic light,...), however, they are not adapted for big simulations (to simulate the traffic in an entire city for example). Conversely, macroscopic models are less easy to modify (to simulate a particular situation) but they can be used for big simulations. The idea is then to find the macroscopic model equivalent to a microscopic model describing a particular scenario (a junction, a bifurcation, different types of drivers, a school zone,...). The first part of this work contains an homogenization result and a numerical homogenization result for a microscopic model with different types of drivers. The second part contains an homogenization and numerical homogenization result for microscopic models with a local perturbation (a moderator, a school zone,...). Finally, we present an homogenization result for a bifurcation.

Identiferoai:union.ndltd.org:theses.fr/2016ISAM0016
Date07 October 2016
CreatorsSalazar, Wilfredo
ContributorsRouen, INSA, Forcadel, Nicolas
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds