Return to search

Développement d'un composite magnétique doux avec revêtement de ferrite nanométrique

Les moteurs électriques, les transformateurs, les électroaimants et autres appareils électriques nécessitent des matériaux qui sont en mesure de canaliser les lignes de champ magnétique tout en limitant les pertes qu’elles entraînent. Les matériaux utilisés à cet escient sont appelés matériaux magnétiques doux. Un des moyens utilisé pour limiter les pertes dans ces matériaux est d’augmenter leur résistivité. Pour y arriver, on unit des matériaux très résistifs à des matériaux ferromagnétiques. On obtient ainsi des composites magnétiques doux. Depuis plus de 100 ans, le type de composite magnétique doux le plus utilisé consiste en un empilement de tôles de fer laminées séparées par un matériau isolant. Ces matériaux sont très efficaces mais ont leur lot d’inconvénients. Depuis quelques années, une nouvelle technique s’appuyant sur la métallurgie des poudres a été développée. Elle consiste à envelopper des particules de fer d’un matériau isolant et de les compacter. On obtient ainsi un matériau qui peut être très résistif. Ce projet avait pour but de développer un composite magnétique doux à base de poudre métallique dont le matériau isolant serait de la ferrite NiZn nanométrique. Pour y arriver deux techniques ont été étudiées. La première consistait à recouvrir les particules de fer par placage de la ferrite et la seconde consistait à ajouter nanoparticules de ferrite NiZn à la poudre de fer. Les résultats ont permis de constater que les deux techniques pouvaient être utilisées pour le développement de composite magnétiques doux. Plus spécifiquement, on a obtenues des pertes magnétiques de 11,9 W/kg et de 93 W/kg à 60 Hz et 400 Hz respectivement pour les échantillons préparés par placage de la ferrite et de 13,5 W/kg et de 137 W/kg à 60Hz et 400 Hz respectivement pour les échantillons préparés par ajout de nanoparticules. / Electric motors, transformers, electromagnets and many other electric devices require materials that can provide a path for magnetic field lines while minimizing losses that they generate. Materials used for these applications are called soft magnetic materials. One way to minimize losses in such materials is to increase their resistivity. In order to do so, highly resistive materials are coupled with ferromagnetic materials. These are called soft magnetic composites. For more than one hundred years, the most common type of soft magnetic composite was made by stacking sheets of rolled iron separated by a thin layer of insulating materials. These were very simple and efficient but also had their share of drawbacks. During the last decades, a new technique based on powder metallurgy was developed. It consists in coating iron particles with an isolating material prior to compaction. This type of materials can be highly resistive. The objective of this project was to develop a soft magnetic composite using metal powders in which the insulating materials would be nanometric NiZn ferrite. Two different techniques were studied in order to achieve this goal. The first one consists in coating iron powders with NiZn ferrite using ferrite plating and the second one consists adding nanoparticles to iron powder. The results obtained throughout this study showed that these two techniques could certainly be used to develop metal powder based soft magnetic composites. More specifically, magnetic weight losses of 11,9 W/kg and 93 W/kg were obtained at 60 Hz and 400 Hz respectively for components prepared using the ferrite plating technique while losses of 13,5 W/kg and 137 W/kg were obtained at 60 Hz and 400 Hz respectively for components prepared by adding ferrite nanoparticles.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/21343
Date16 April 2018
CreatorsLapointe, Philippe
ContributorsBlais, Carl
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format193 p., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds