Return to search

Rapid-Prototyping hydraulisch härtender Calcium- und Magnesiumphosphatzemente mit lokaler Wirkstoffmodifikation / Rapid-prototyping of hydraulic calcium- and magnesium phosphate cements with local drug modification

Ziel dieser Arbeit war die Herstellung individuell formbarer Strukturen mittels des 3D-Pulverdrucks auf Basis von bei Raumtemperatur hydraulisch abbindenden Knochenzementpulvern. Neben der Entwicklung neuartiger Zementformulierungen auf Basis von Magnesiumphosphaten war vor allem die gleichzeitige Ausstattung der Werkstoffe mit temperaturlabilen und bioaktiven Verbindungen ein wichtiger Entwicklungsschritt. Die Lokalisation der Wirkstoffe korreliert dabei mit entsprechenden Farbinformationen im Design der Konstrukte, die durch einen Mehrfarbendrucker physikalisch abgebildet werden. Das auf Calciumphosphat basierende System hat den Nachteil, dass die Abbindereaktion bei stark sauren pH-Werten abläuft, was negative Auswirkungen auf die gleichzeitige Ausstattung mit sensitiven Wirkstoffen hat. Zur Lösung dieser Problematik wurde ein neues Knochenzementpulver auf Magnesiumphosphatbasis entwickelt, welches unter neutralen pH-Bedingungen mit ammoniumhaltigem Binder zu dem Mineral Struvit abbindet. Das Zementpulver aus Trimagnesiumphosphat wurde bezüglich der pulvertechnologischen Eigenschaften, wie Partikelgröße, Partikelgrößenverteilung, Glättungseigenschaften und Schüttdichte sowie hinsichtlich des Abbindeverhaltens charakterisiert und für den Druckprozess optimiert. Die hohe Strukturgenauigkeit ermöglichte die Darstellung von makroporösen Strukturen mit einem minimalen Porendurchmesser von ca. 200 µm. Gute mechanische Kennwerte der gedruckten Strukturen, sowie eine hohe Umsetzungsrate zur gewünschten Phase Struvit wurden durch eine Nachhärtung in Ammoniumphosphatlösung erhalten. Die Druckfestigkeit betrug > 20 MPa und der Phasenanteil von Struvit konnte auf insgesamt 54 % gesteigert werden. Die Darstellung von wirkstoffmodifizierten Calciumphosphat- und Magnesiumphosphatstrukturen durch Verwendung eines Mehrfarbendruckers wurde beginnend vom Design der Strukturen bis hin zur experimentellen Bestimmung der Korrelation von Farbinformation und Binderapplikation etabliert. Zur Sicherstellung einer hohen Druckqualität und der Ortsständigkeit gedruckter Wirkstoffe erwies sich eine zusätzliche Modifikation des Tricalciumphosphatpulvers mit quellfähigen Polymeren (Hydroxypropylmethyl-cellulose (HPMC) bzw. Chitosan) als erfolgreich. Eine maximale Auflösung von ca. 400 µm konnte für eine HPMC/Chitosan/Calciumphosphat-Variante erreicht werden, während das hochreaktive Magnesiumphosphat/Magnesiumoxid-System eine Auflösung von 480 µm aufwies. Die Ortsständigkeit eingebrachter Lösungen war Voraussetzung für die Steuerung der Freisetzungskinetik. Das Freisetzungsverhalten in vitro wurde in Abhängigkeit von der Wirkstofflokalisation (homogen, Depot, Gradient) innerhalb der Matrix und unter Einbringung zusätzlicher polymerer Diffusionsbarrieren für den Wirkstoff Vancomycin untersucht. Dabei zeigte sich, dass die Modifikation der Matrices mit Polymeren zu einer verzögerten Freisetzung führte. Die lokale Wirkstoffmodifikation der Matrices in Form eines Depots oder Gradienten hatte Einfluss auf die Freisetzungskinetik, wobei eine lineare Freisetzung mit der Zeit (Kinetik 0. Ordnung) erreicht werden konnte. Die applizierten Wirkstoffe umfassten sowohl niedermolekulare Verbindungen, wie etwa das Antibiotikum Vancomycin oder das Polysaccharid Heparin, als auch proteinbasierte Faktoren wie den Knochenwachstumsfaktor rhBMP-2. Beurteilt wurde die pharmakologische Wirksamkeit der Verbindungen nach dem Druck, sowie nach der Freisetzung aus einer Calciumphosphatmatrix für den Wirkstoff Vancomycin. Es konnte belegt werden, dass die biologische Aktivität nach dem Druckprozess zu über 80 % erhalten blieb. Limitierend war der stark saure pH-Wert bei bruschitbasierten Systemen, der zu einer Inaktivierung des Proteins führte. Diesem Problem könnte durch die Nutzung des neutral abbindenden Magnesiumphosphatsystems entgegengewirkt werden. Abschließend erfolgten eine mikrostrukturelle Charakterisierung der Calciumphosphat- und Magnesiumphosphatmatrices mittels µ-CT-Analyse und Heliumpyknometrie, sowie eine quantitative Phasenanalyse nach Rietveld. Experimentell konnte nachgewiesen werden, dass mit Hilfe des 3D-Pulverdruck die Darstellung von Makroporen > 200 µm möglich ist. Die Analyse der Phasenzusammensetzung ergab, dass die Umsetzungsrate von Tricalciumphosphat und Trimagnesiumphosphat zu den gewünschten Phasen Bruschit und Struvit infolge des Nachhärtungsprozesses signifikant gesteigert werden konnte. Im Zuge dessen nahm die Porosität der gedruckten Matrices der Phase Struvit von 58 % auf 26 % und der Phase Bruschit von 47 % auf 38 % ab. / Aim of this study was the room temperature fabrication of individually formed structures via 3D-powder printing based on hydraulic bone cements. In addition to the development of a novel cement formulation composed of magnesium phosphate, the simultaneous modification of matrices during the printing process with temperature sensitive and bioactive drugs was an important part of the work. The drug localization within the matrices is hereby correlated with an analogous colour design of the structures, which is physically reproduced by the multi-colour-printer. The calcium phosphate based system has the disadvantage of a strongly acidic setting reaction, which has negative effects on the simultaneous modification with sensitive bioactive agents. To solve this problem a novel bone cement formulation based on magnesium phosphate was established. This cement reacts with ammonium based binder solution within seconds to form the mineral struvite at neutral pH. The technological properties of the of trimagnesium phosphate cement powder, including particle size, particle size distribution, spreadability, powder density, and the setting behaviour, were characterized and optimized for the printing process. The high structural accuracy enabled the production of macroporous structures with a minimal pore diameter of approximately 200 µm. Proper mechanical characteristics of the printed structures as well as a high degree of conversion to the struvite phase were achieved by post-hardening in ammonium phosphate solution. The compressive strength could be increased to more than 20 MPa and the phase fraction of struvite could be increased to a maximum value of a total of 54 %. The fabrication of drug loaded calcium phosphate and magnesium phosphate scaffolds using a multi-colour-printer was established, beginning with the structure design and following the experimental verification of the correlation between the colour information and the applied binder. To guarantee a high accuracy of printing and the localization of the printed drugs, a supplemental modification of the tricalcium phosphate powder with swellable polymers (hydroxypropylmethylcellulose (HPMC) or chitosan) was successful. A maximum resolution of about 400 µm was achieved by an HPMC/chitosan/calcium phosphate composition, whereas the highly reactive magnesium phosphate/magnesium oxide system showed a resolution of about 480 µm. The localization of the applied solutions was a prerequisite to control the release kinetics of the drugs. The release kinetic of vancomycin was investigated in vitro depending on the drug localization (homogeneous, depot, gradient-like) within the matrix and by adding additional polymeric diffusion barriers. It could be shown that the polymeric modification of the matrices resulted in a delayed drug release. By discrete and depot-like or graded drug distributions within the matrices the release kinetic could be controlled, achieving a linear release with time (zero order release). The administered agents involved both low molecular compounds like the antibiotic vancomycin or the polysaccharide heparin and protein based factors like bone morphogenic factor rhBMP-2. Evaluation of pharmacological activity of the agents after printing as well as after release of vancomycin from a calcium phosphate matrix was determined, indicating that the bulk biological activity of more than 80 % was retained during the printing process. The limiting factor of the brushite based system was the strong acidic pH, which resulted in an inactivation of protein-based bioactives. This problem may be solved by using neutrally setting magnesium phosphate systems. Finally a microstructural characterization of calcium phosphate and magnesium phosphate matrices by µ-CT analysis and helium pycnometry as well as a quantitative phase analysis by Rietveld was performed. It was demonstrated, that 3D-printing allows the manufacturing of macro pores > 200 µm. The analysis of phase composition showed a significant increase of the degree of conversion from tricalcium phosphate or trimagnesium phosphate to the phases brushite or struvite due to the post hardening process. Hence the porosity of the printed matrices decreased from 58 % to 26 % for struvite and from 47 % to 38 % for brushite.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:5749
Date January 2011
CreatorsVorndran, Elke
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds