Return to search

Magnetic State Detection in Magnetic Molecules Using Electrical Currents

A system with two magnetic molecules embedded in a junction between non-magnetic leads was studied. In this system electrons tunnel from the localized energy level in region one to the localized energy level in region two generating a flow of electric charge through the quantum dot system. The current density and thus the conductance changes depending on the molecular spin moment. In this work we studied molecules with either spin "up" or spin "down" and with symmetric coupling strengths. The results indicate that the coupling strength between energy level and molecule together with the tunneling rate through the insulating layer play a major role when switching from parallel to anti-parallel molecular spin, for a specific combination of the coupling strength and tunneling rate we could observe a decrease in the current by 99.7% in the non-gated system and 99.4% in the gated system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-257094
Date January 2015
CreatorsSaygun, Turab
PublisherUppsala universitet, Materialteori
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 15040

Page generated in 0.1468 seconds