1 |
Electronic structure studies of metal-organic and intermetallic compoundsTakács, Albert Flavius 23 January 2006 (has links)
Many technological aspects of everyday life are based on practical applications of the magnetic properties of the materials. Miniaturization is a key technological aspect; electronic circuits and storage devices are nowadays steadily decreasing in size and will eventually reach molecular dimensions. The understanding and predictions of the properties of matter at atomic levels represents one of the great achievements of the last years in science. In the present thesis, the aim is to present a complete study of the electronic structure of selected materials, by means of experimental and theoretical methods. The class of materials which are presented in this thesis, are belonging to the magnetic molecules and intermetallic compounds. The electronic structure of the single molecule system named ferric star molecule has been studied. From the resonant X-ray emission study the trend observed for the FeFe3 star gives a signature for the high-spin structure, or more precisely of strong magnetic systems like FeO or Heusler alloys. For the case of intermetallic alloys and compounds, the Mn 2p core-level presents a visible split structure, which is arising from the exchange interactions between the core-hole and the unpaired 3d electrons. The interpretation of this splitting can be regarded as an evidence of local magnetic moments belonging to the Mn site.
|
2 |
Magnetic State Detection in Magnetic Molecules Using Electrical CurrentsSaygun, Turab January 2015 (has links)
A system with two magnetic molecules embedded in a junction between non-magnetic leads was studied. In this system electrons tunnel from the localized energy level in region one to the localized energy level in region two generating a flow of electric charge through the quantum dot system. The current density and thus the conductance changes depending on the molecular spin moment. In this work we studied molecules with either spin "up" or spin "down" and with symmetric coupling strengths. The results indicate that the coupling strength between energy level and molecule together with the tunneling rate through the insulating layer play a major role when switching from parallel to anti-parallel molecular spin, for a specific combination of the coupling strength and tunneling rate we could observe a decrease in the current by 99.7% in the non-gated system and 99.4% in the gated system.
|
3 |
Scanning tunneling microscopy on low dimensional systemsSalazar Enríquez, Christian David 13 October 2016 (has links) (PDF)
This thesis contains experimental studies on low dimensional systems by means of scanning tunneling microscopy (STM). These studies include investigations on dinickel molecular complexes and experiments on iron nanostructures used for the implementation of the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. Additionally, this work provides detailed information of the experimental technique (STM), from the theoretical background to the STM-construction, which was part of this doctoral work.
Molecular anchoring and electronic properties of macrocyclic magnetic complexes on gold surfaces have been investigated by mainly scanning tunneling microscopy and complemented by X-rays photoelectron spectroscopy. Exchange–coupled macrocyclic complexes [Ni2L(Hmba)]+ were deposited via 4-mercaptobenzoate ligands on the surface of Au(111) single crystals. The results showed the success of gold surface-grafted magnetic macrocyclic complexes forming large monolayers. Based on the experimental data, a growth model containing two ionic granular structures was proposed. Spectroscopy measurements suggest a higher gap on the cationic structures than on the anionic ones. Furthermore, the film stability was probed by the STM tip with long-term measurements. This investigation contributes to a new promising direction in the anchoring of molecular magnets to metallic surfaces.
Iron nanostructures of two atomic layers and iron-coated tungsten tips were used in order to implement the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. First of all, a systematic study of the iron growth, from sub-monolayers to multilayers on a W(110) crystal is presented. Subsequent to the well-understanding of the iron growth, the experiments were focused on revealing, for the first time at the IFW-Dresden, the magnetic inner structure of iron nanostructures. The results evidently showed the presence of magnetic domains of irregular shapes. Furthermore, SP-STM probed the bias voltage dependence of the magnetic contrast on the iron nanostructures. This technique opens up a new powerful research line at the IFW-Dresden which is promising for the study of quantum materials as molecular magnets and strongly correlated systems.
|
4 |
Scanning tunneling microscopy on low dimensional systems: dinickel molecular complexes and iron nanostructuresSalazar Enríquez, Christian David 28 September 2016 (has links)
This thesis contains experimental studies on low dimensional systems by means of scanning tunneling microscopy (STM). These studies include investigations on dinickel molecular complexes and experiments on iron nanostructures used for the implementation of the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. Additionally, this work provides detailed information of the experimental technique (STM), from the theoretical background to the STM-construction, which was part of this doctoral work.
Molecular anchoring and electronic properties of macrocyclic magnetic complexes on gold surfaces have been investigated by mainly scanning tunneling microscopy and complemented by X-rays photoelectron spectroscopy. Exchange–coupled macrocyclic complexes [Ni2L(Hmba)]+ were deposited via 4-mercaptobenzoate ligands on the surface of Au(111) single crystals. The results showed the success of gold surface-grafted magnetic macrocyclic complexes forming large monolayers. Based on the experimental data, a growth model containing two ionic granular structures was proposed. Spectroscopy measurements suggest a higher gap on the cationic structures than on the anionic ones. Furthermore, the film stability was probed by the STM tip with long-term measurements. This investigation contributes to a new promising direction in the anchoring of molecular magnets to metallic surfaces.
Iron nanostructures of two atomic layers and iron-coated tungsten tips were used in order to implement the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. First of all, a systematic study of the iron growth, from sub-monolayers to multilayers on a W(110) crystal is presented. Subsequent to the well-understanding of the iron growth, the experiments were focused on revealing, for the first time at the IFW-Dresden, the magnetic inner structure of iron nanostructures. The results evidently showed the presence of magnetic domains of irregular shapes. Furthermore, SP-STM probed the bias voltage dependence of the magnetic contrast on the iron nanostructures. This technique opens up a new powerful research line at the IFW-Dresden which is promising for the study of quantum materials as molecular magnets and strongly correlated systems.
|
5 |
On Classical and Quantum Mechanical Energy Spectra of Finite Heisenberg Spin SystemsExler, Matthias 16 May 2006 (has links)
Since the synthesis of Mn12, which can be regarded as the birth of the class of magnetic molecules, many different molecules of various sizes and structures have been produced. The magnetic nature of these molecules originates from a number of paramagnetic ions, whose unpaired electrons form collective angular momenta, referred to as spins. The interaction between these spins can often be described in the Heisenberg model. In this work, we use the rotational band model to predict the energy spectrum of the giant Keplerate {Mo72Fe30}. Based on the approximate energy spectrum, we simulate the cross-section for inelastic neutron scattering, and the results are compared to experimental data. The successful application of our approach substantiates the validity of the rotational band model. Furthermore, magnetic molecules can serve as an example for studying general questions of quantum mechanics. Since chemistry now allows the preparation of magnetic molecules with various spin quantum numbers, this class of materials can be utilized for studying the relations between classical and quantum regime. Due to the correspondence principle, a quantum spin system can be described exactly by classical physics for an infinitely large spin quantum number s. However, the question remains for which quantum numbers s a classical calculation yields a reasonable approximation. Our approach in this work is to develop a converging scheme that adds systematic quantum corrections to the classical density of states for Heisenberg spin systems. To this end, we establish a correspondence of the classical density of states and the quantum spectrum by means of spin-coherent states. The algorithm presented here allows the analysis of how the classical limit is approached, which gives general criteria for the similarity of the classical density of states to the quantum spectrum.
|
Page generated in 0.0541 seconds