Metal oxide nanoparticles, both magnetic and nonmagnetic, have a multitude of applications in gas sensors, catalysts and catalyst supports, airborne trapping agents, biomedicines and drug delivery systems, fuel cells, laser diodes, and magnetic microwaves. Over the past decade, an inexpensive, simple, recyclable, and environmentally friendly large, scale synthesis method for the synthesis of these metal oxide nanoparticles has been sought. Many of the current techniques in use today, while good on the small, laboratory bench scale, suffer from drawbacks that make them unsuitable for the industrial scale. The aminolytic method, developed by Dr. Man Han while working for Dr. Zhang, fits industrial scale-up requirements. The aminolytic method involves a reaction between metal carboxylate(s) and oleylamine in a non-coordinating solvent. This system was shown to produce a range of spinel ferrites. Dr. Lisa Vaughan showed that this method can be recycled multiple times without degrading the quality of the produced nanoparticles. The purpose of this thesis is to test the versatility of the aminolytic method in the production of a wide range of metal oxides as well as various core/shell systems. Chapter 2 explores the effect of precursor carboxylates chain length on the aminolytic synthesis of cobalt ferrite, and manganese ferrite nanoparticles. In Chapter 3, a series of CuxMn1-xFe₂O₄, (x ranges from 0.0 to 0.2), nanoparticles were synthesized via the aminolytic method. This series allows for the investigation of the effects of orbital Jahn-Teller distortion as well as orbital angular momentum on the magnetic properties of this ferrite. The quantum couplings of magnetic ions in spinel ferrites govern their magnetic properties and responses. An understanding of the couplings between these metal ions allows for tailoring magnetic properties to obtain the desired response needed for various applications. Chapter 4 investigates the synthesis of MnO and Mn₃O₄ nanoparticles in pure single phase with high monodispersity. To the best of our knowledge, the range of sizes produced for MnO and Mn₃O₄ is the most extensive, and therefore a magnetic study of these systems shows some intriguing size dependent properties. The final part of this chapter investigates the applicability of the aminolytic method for building a MnO shell on a CoFe₂O₄ core. Chapter 5 explores the synthesis of another metal oxide, ZrO₂ in both the cubic and monoclinic phases with no impurities. The use of the aminolytic method here removes the need for dangerous/expensive precursors or equipment and eliminates the need for extensive high temperature heat treatments that destroy monodispersity which is required for most techniques. The creation of a core/shell system between CoFe₂O₄ and ZrO₂ using the aminolytic method was also tested. This core/shell system adds magnetic manipulation which is especially useful for the recovery of zirconia based photocatalyst. Chapter 6 studies the application of the aminolytic method in the synthesis of yttrium iron garnet (YIG) and yttrium iron perovskite (YIP) nanoparticles. Current synthesis techniques used to produce YIG and YIP nanoparticles often requires high temperatures, sensitive to contamination, which could be eliminated through the use of our method
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50122 |
Date | 07 November 2012 |
Creators | Sabo, Daniel E. |
Contributors | Zhang, Z. John |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0024 seconds