This research has its basis in developments within the field of inductive powering and wireless power transfer, WPT, and more specifically one the branch within this field, which is called magnetic resonance coupling. This principle enables efficient power transfer from a transmitting unit to a receiving unit at a distance of some times the unit diameter. The developments within magnetic resonant coupling are together with the possibilities and challenges of today’s smart textile industry the starting point to investigate a novel textile-based product concept for WPT by combining both technologies. Multiple textile samples, consisting of cotton and electrically conductive copper yarns, were produced by weaving technique, additional assembling of electronic components were performed manually and several measurements were carried out to investigate the sample characteristics and the sample performance in terms of power transfer. The produced samples showed to behave similarly to conventional inductors and were able to transfer power over some distance.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hb-10264 |
Date | January 2016 |
Creators | Yring, Malin |
Publisher | Högskolan i Borås, Akademin för textil, teknik och ekonomi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds