The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy
ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:15186 |
Date | January 2016 |
Creators | Stiller, Markus, Barzola-Quiquia, Jose, Esquinazi, Pablo, Spemann, Daniel, Meijer, Jan, Lorenz, Michael, Grundmann, Marius |
Contributors | Universität Leipzig |
Publisher | AIP Publishing |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Source | AIP Advances 6, 125009 (2016) doi: 10.1063/1.4971794 |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds