Understanding magnetization reversal is very important in designing high density and high data transfer rate recording media. This research has been motivated by interest in developing new nonvolatile data storage solutions as magnetic random access memories - MRAMs. This dissertation is intended to provide a theoretical analysis of static and dynamic magnetization switching of magnetic systems within the framework of critical curve (CC). Based on the time scale involved, a quasi-static or dynamic CC approach is used. The static magnetization switching can be elegantly described using the concept of critical curves. The critical curves of simple uncoupled films used in MRAM are discussed. We propose a new sensitive method for CC determination of 2D magnetic systems. This method is validated experimentally by measuring experimental critical curves of a series of Co/SiO2 multilayers systems. The dynamics switching is studied using the Landau-Lifshitz-Gilbert (LLG) equation of motion. The switching diagram so-called dynamic critical curve of Stonerlike particles subject to short magnetic field pulses is presented, giving useful information for optimizing field pulse parameters in order to make ultrafast and stable switching possible. For the first time, the dynamic critical curves (dCCs) for synthetic antiferromagnet (SAF) structures are introduced in this work. Comparing with CC, which are currently used for studying the switching in toggle MRAM, dCCs show the consistent switching and bring more useful information on the speed of magnetization reversal. Based on dCCs, better understanding of the switching diagram of toggle MRAM following toggle writing scheme can be achieved. The dynamic switching triggered by spin torque transfer in spin-torque MRAM cell has been also derived in this dissertation. We have studied the magnetization's dynamics properties as a function of applied current pulse amplitude, shape, and also as a function of the Gilbert damping constant. The great important result has been obtained is that, the boundary between switching/non-switching regions is not smooth but having a seashell spiral fringes. The influence of thermal fluctuation on the switching behavior is also discussed in this work.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2009 |
Date | 20 December 2009 |
Creators | Pham, Huy |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0021 seconds