Return to search

Réalisation d'un magnétomètre à centre coloré NV du diamant / Realisation of a NV coulour centre based magnetometer

L'imagerie de champs magnétiques de faible amplitude avec une résolution spatiale à l'échelle nanométrique est un enjeu important dans de nombreux domaines de la physique et pour de multiples applications, que ce soit par exemple en science des matériaux pour le stockage magnétique de l'information, ou bien en optique quantique afin de pouvoir contrôler un spin individuel utilisé comme bit quantique, ou encore en biophysique pour l'étude structurelle de protéines par résonance magnétique. Dans ce contexte, cette thèse décrit la réalisation d'un magnétomètre à balayage fondé sur la réponse magnétique du spin électronique d'un centre coloré NV du diamant. Un tel magnétomètre présente des propriétés sans équivalent, en combinant une résolution spatiale sub-nanométrique, assurée par la dimension atomique du capteur, et une très haute sensibilité (< 1 µT/Hz^(-1/2)), ceci même à température ambiante. De plus la mesure de champ magnétique est quantitative et non perturbative, offrant ainsi un avantage majeur par rapport à la microscopie à force magnétique couramment utilisée pour l'imagerie magnétique de nanostructures. Nous aborderons, dans un premier temps, les problématiques liées à la fabrication de la sonde magnétique, constituée par un centre coloré NV unique dans un nanocristal de diamant positionné à l'extrémité d'une pointe AFM. Les propriétés de ce magnétomètre seront caractérisées en imageant le champ de fuite d'un disque dur magnétique. Cette étude nous permettra d'introduire différentes méthodes d'imagerie magnétique et de comparer leurs performances. Le magnétomètre à centre NV sera par la suite utilisé pour imager des distributions d'aimantation vortex dans des plots ferromagnétiques, dont le cœur est connu pour être l'un des objets les plus petits du micromagnétisme, le rendant extrêmement difficile à observer. Les propriétés du magnétomètre à centre coloré NV du diamant, démontrées dans cette thèse, ouvrent la voie à de nombreuse études en nanomagnétisme et en spintronique. / Imaging weak magnetic fields at the nanoscale is a challenge for many field of reasearch, and for a wide range of applications, such as in material science, for the magnetic storage of the information, or in quantum optics with the opportunity to control a single spin used as a quantum bit, or in biophysics where magnetic resonance can enable structural imaging of a protein. In that context, this thesis describes the realisation of a scanning probe magnetometer based on the electron spin resonance of a single NV colour centre in diamond. Such a magnetometer provides unprecedented properties, consisting of a sub-nanometric spatial resolution, given by the effective atomic size of the defect, combined with a high sensitivity (< 1 µT/Hz^(-1/2)), even at room temperature. Moreover magnetic field ca be measured quantitatively, with no perturbation induced, which is a major asset comparing to what can be done using the usual magnetic force microscopy technique. We will first describe the realisation of the magnetic probe, consisting of a single NV colour centre in a diamond nanocristal, grafted at the apex of an AFM tip. Properties of this magnetometer will be then characterized by imaging the stray field generated by a magnetic hard disk. Different imaging techniques will be presented, and compared during this study. Finally, magnetic vortex in patterned ferromagnetic thin film will be imaged, especially the vortex core, which is known to be one of the smallest object of micromagnetism. The exceptional properties of NV based magnetometry, demonstrated in ths work, might enable various applications in nanomagnetisms and spintronics.

Identiferoai:union.ndltd.org:theses.fr/2012DENS0065
Date23 November 2012
CreatorsRondin, Loïc
ContributorsCachan, Ecole normale supérieure, Roch, Jean François
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0064 seconds