Return to search

Magnetotransport in Two Dimensional Electron Systems Under Microwave Excitation and in Highly Oriented Pyrolytic Graphite

This thesis consists of two parts. The first part considers the effect of microwave radiation on magnetotransport in high quality GaAs/AlGaAs heterostructure two dimensional electron systems. The effect of microwave (MW) radiation on electron temperature was studied by investigating the amplitude of the Shubnikov de Haas (SdH) oscillations in a regime where the cyclotron frequency $\omega_{c}$ and the MW angular frequency $\omega$ satisfy $2\omega \leq \omega_{c} \leq 3.5\omega$. The results indicate negligible electron heating under modest MW photoexcitation, in agreement with theoretical predictions. Next, the effect of the polarization direction of the linearly polarized MWs on the MW induced magnetoresistance oscillation amplitude was investigated. The results demonstrate the first indications of polarization dependence of MW induced magnetoresistance oscillations. In the second part, experiments on the magnetotransport of three dimensional highly oriented pyrolytic graphite (HOPG) reveal a non-zero Berry phase for HOPG. Furthermore, a novel phase relation between oscillatory magneto- and Hall- resistances was discovered from the studies of the HOPG specimen.

Identiferoai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:phy_astr_diss-1054
Date07 August 2012
CreatorsRamanayaka, Aruna N
PublisherDigital Archive @ GSU
Source SetsGeorgia State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourcePhysics and Astronomy Dissertations

Page generated in 0.0014 seconds