Return to search

Desenvolvimento e caracterização de um sensor magnetoelástico de deformação

Materiais amorfos demonstraram possuir um comportamento magnetomecânico superior ao de qualquer outro material magnético. Isso vêm permitindo sua utilização para um crescente número de finalidades de sensoriamento. A capacidade de interrogar remotamente a frequência de ressonância de fitas de material amorfo através de campos magnéticos permite a aplicação destas como sensores em situações que não permitem acesso direto à superfície de medição. Essa qualidade pode ser útil no monitoramento de risers que trazem petróleo do fundo do mar até plataformas na superfície. A frequência de ressonância das fitas amorfas depende, entre outras propriedades, da intensidade do campo magnético no qual estão inseridas. Desta forma, a deformação de um substrato pode ser monitorada através do uso de um transdutor nele colado, o qual se magnetiza à medida que o substrato deforma, consequentemente mudando o campo magnético imposto sobre o ressonador e a sua frequência de ressonância. Neste trabalho, a construção de um sensor magnetoelástico de deformação é investigada, onde uma liga policristalina de FeAlB foi utilizada como transdutor, e fitas de materiais amorfos, de nomes comerciais Metglas 2826 MB3 e 1K501, foram utilizadas como ressonadores. A liga de Fe80Al20, com 2%at. de B, mostrou ter uma magnetostricção de 80 ppm, o que inspirou o seu uso como transdutor, o que possibilita a substituição das fitas amorfas utilizadas anteriormente. Uma bancada de testes, capaz de aplicar tensão mecânica a um substrato de latão, foi construída com o objetivo de testar a sensibilidade do sensor magnetoelástico à deformação. Foi observado um comportamento altamente linear da frequência de ressonância do sensor com a tensão aplicada sobre o substrato de latão, com Gauge Factors de 120 e 90 para os sensores que utilizaram Metglas 2028 MB3 e 1K501 como ressonadores, respectivamente. Este resultado instigou a exploração da aplicabilidade do sensor magnetoelástico em substratos ferromagnéticos. Por fim, ensaios de tração foram realizados, nos quais a deformação dos substratos de aço SAE 1010 foram monitoradas simultaneamente pelo sensor magnetoelástico e por um Strain Gauge. A variação de frequência de ressonância do sensor nestes esaios apresentou uma forma mais sigmoidal, com uma região quase linear. O monitoramento de um riser com este dispositivo seria factível / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES / Amorphous metals have been shown to have magnetomechanical properties which are superior to those of any other magnetic materials. This has allowed their usage in a growing number of sensing purposes. The capacity of remotely interrogating the resonant frequency of amorphous material stripes trough magnetic fields allows their application as sensor in situations that do now allow direct contact with the measurement surface. This quality may be useful for the monitoring of risers that bring petrol from deep sea to platforms on the surface. The resonant frequency of the stripes is a function of, alongside other properties, the intensity of the magnetic field in which they are inserted. Thus, a substrate’s deformation may be monitored trough the use of a transducer in him affixed, which magnetizes as the substrate deforms, consequently altering the magnetic field imposed over the resonator, and its resonant frequency. In this work, the construction of a magnetoelastic strain sensor is investigated, where a polycrystalline FeAlB alloy was used as transducer, and amorphous materials, by the commercial name of Metglas 2826 MB3 and 1K501, were used as resonators. The Fe80Al20 alloy, with 2%at. B, was shown to have an 80 ppm magnetostriction, which inspired its use as transducer, which enabled the substitution of the amorphous ribbons previously used. A testing bench, capable of applying mechanical stress to a brass substrate, was built with the goal of teste the sensibility of the magnetoelastic sensor to strain. A highly linear behavior of the sensor’s resonant frequency to the applied stress on the brass substrate was observed, with Gauge Factors of 120 for the sensors that used Metglas 2826 MB3 and 1K501 as resonators, respectively. This result instigated the exploration of the magnetoelastic sensor’s applicability on ferromagnetic surfaces. Finally, mechanical stress tests were conducted, in which the deformation of the SAE 1010 steel substrate were simultaneously monitored by the magnetoelastic sensor, and a Strain Gauge. The resonant frequency of the sensor is this test showed a sigmoidal form, with a nearly linear region. The monitoring of a riser with this device is feasible

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ucs.br:11338/3695
Date21 February 2018
CreatorsBastos, Eduardo Stimamiglio
ContributorsBormio-Nunes, Cristina, Clarke, Thomas Gabriel Rosauro, Farias, María Cristina Moré, Missell, Frank Patrick
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UCS, instname:Universidade de Caxias do Sul, instacron:UCS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds