Ces travaux de thèse traitent des problèmes de maintenance associés aux véhicules industriels. Ils se concentrent sur la planification des opérations de maintenance et sur le développement d'une méthodologie de conception pour la maintenance. Le but est de proposer une offre de maintenance personnalisée en fonction de chaque véhicule et capable de s'adapter aux contraintes des utilisateurs. Dans l'industrie du transport, ces contraintes se caractérisent par un nombre d'opportunités de maintenance limité et des immobilisations à fortes conséquences financières. Cette offre a vocation à garantir un niveau de disponibilité élevé tout en réduisant l'impact de la maintenance sur les coûts globaux d'exploitation. Dans ce cadre, la politique de maintenance développée vise à assurer, moyennant un certain risque, l'autonomie d'un système multi-composant sur des périodes d'opérations données. Pendant ces périodes, aucune opération de maintenance et aucune défaillance du système ne doivent venir perturber la réalisation des missions. A la fin de chaque période, la politique considérée évalue la nécessité d'une intervention de maintenance pour assurer la prochaine période avec un niveau de confiance spécifié. Lorsque la maintenance est jugée indispensable, des critères intégrant les coûts et l'efficacité de la maintenance sont introduits pour sélectionner les opérations à réaliser. Cette forme originale de regroupement dynamique s'appuie à la fois sur les modèles de fiabilité des composants, sur la structure fiabiliste du système et sur les informations de surveillance disponibles en ligne. Celles-ci se composent d'informations liées à l'état de santé des composants mais également à leurs conditions d'utilisation. La flexibilité du processus permet d'intégrer, dans la décision, des niveaux d'informations différents suivant les composants. Les paramètres de cette politique, à savoir la longueur de la période et le niveau de confiance, sont optimisés en fonction du coût total de maintenance. Ce coût, évalué sur un horizon fini, intègre les coûts directs associés aux opérations de maintenance et les coûts indirects engendrés par les immobilisations. Pour envisager une réduction significative des coûts d'exploitation du système, l'optimisation de la politique de maintenance seule ne suffit pas. Il est primordial de mener une réflexion plus large associant le système et sa maintenance dès la conception. Pour diriger cette réflexion, la méthodologie de conception proposée hiérarchise, à l'aide d'un facteur d'importance original, l'impact des composants sur les coûts d'exploitation. Différentes options de conceptions sont ensuite évaluées, par simulation, sur les composants jugés prioritaires. Les options retenues conduisent à réduire les coûts globaux d'exploitation. Des résultats de simulation permettent d'illustrer les méthodes développées. Une application sur un sous-système du véhicule industriel est également réalisée. / This thesis research work focuses on the maintenance operations scheduling and the development of a design methodology for maintenance. The aim is to suggest a customized maintenance service offer for each vehicle and able to adapt to user constraints. In the transport industry, these constraints are defined by a limited number of maintenance opportunities and vehicle unplanned stops with significant financial consequences. This service offer should enable both to improve the vehicle uptime and to reduce the maintenance impact on operating costs. In this framework, the developed maintenance policy ensures, with a given risk probability, maintenance free operating periods for a multi-component system. During these periods, the system should be able to carry out all its assigned missions without maintenance actions and system fault. And the end of each period, the considered policy evaluates if a maintenance action is required to ensure maintenance-free and fault-free operation on the next period with a specified confidence level. When a maintenance action is mandatory, decision criteria considering the maintenance costs and the maintenance efficiency are used to select the operations to be performed. This form of dynamic clustering, called time-driven clustering, integrates both the component reliability models, the system structure and the available monitoring information. In our case, the monitoring information refers to the component state information and information on the component operating conditions. The process flexibility makes possible to make a maintenance decision in using different information levels for system components. The policy parameters, namely the period length and the confidence level value, are optimized based on the total maintenance cost. This cost, evaluated on a finite horizon, is composed of directs costs related to maintenance operations and indirect costs generated by system immobilizations. In order to reach a significant operating costs reduction, the maintenance policy optimization alone is not sufficient. It is essential to have a broader approach to involve the system and its maintenance since the conception. In this context, the developed design methodology suggests to prioritize the components impact on the operating costs. This prioritization is performed thanks to a defined importance factor. Then, multiple design options are evaluated by simulation in priority component. The selected options lead to reduce the operating costs. This work contains simulation results that illustrate the methods mentioned above. Moreover, a heavy vehicle sub-system is used as a test-case.
Identifer | oai:union.ndltd.org:theses.fr/2015GREAT022 |
Date | 26 March 2015 |
Creators | Lesobre, Romain |
Contributors | Grenoble Alpes, Bérenguer, Christophe, Cocquempot, Vincent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds