Return to search

Ferromagnetic resonance study of the Half-Heusler alloy NiMnSb : The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators / Ferromagnetische Resonanz Studie der Halb-Heusler Legierung NiMnSb

Seit der Entdeckung des Spin-Torque durch Berger und Slonczewsky im Jahre 1996 gewann dieser Effekt immer mehr an Einfluss in dem Gebiet der Spintronic. Dies geschah besonders durch den Einfluss des Spin-Torque auf die Informationsspeicher und Kommunikationstechnologien (z.B. die Möglichkeit einen magnetischen Zustand eines Speicherelementes mit Hilfe von Strom und nicht wie bisher durch das Anlegen eines magnetischen Feldes zu ändern, oder die Realisierung eines hochfrequenten Spin-Torque-Oszillator (STO). Aufgrund des direkten Zusammenhangs zwischen der Dämpfung in Ferromagneten und der kritischen Stromdichte, die nötig ist um ein Spin-Ventil zu schalten oder ein Präzidieren der Magnetisierung zu induzieren, wurde die Forschung an Ferromagneten mit geringer Dämpfung zunehmend forciert. In dieser Arbeit werden Studien der ferromagnetischen Resonanz (FMR) von NiMnSb Schichten und Transportmessungen an NiMnSb basierten Spin-Ventilen präsentiert. Das Halbmetall NiMnSb ist mit einer theoretischen 100%igen Spinpolarisation prädestiniert für die Verwendung in GMR Elementen. Neben der theoretisch vorhergesagten hohen Spinpolarisation zeigen die durchgeführten FMR Messungen einen überaus geringen Dämpfungsfaktor für dieses Material. Dieser liegt in der Größenordnung von wenigen 10-3. Somit ist die Dämpfung in NiMnSb um den Faktor zwei geringer als in Permalloy und gut vergleichbar mit epitaktisch gewachsenen Eisen-Schichten. Neben den guten Dämpfungseigenschaften zeigen jedoch theoretische Modelle den Verlust der 100%igen Spinpolarisation durch das Brechen der Translationssymmetrie an Grenzflächen und das Kollabieren der Aufspaltung im Minoritäts-Spin-Band. Da ein Wachstum in (111) Richtung diesen Prozess entgegen wirken kann, werden in dieser Arbeit zudem auf (111)(In,Ga)As gewachsene NiMnSb Schichten mittels FMR untersucht. Die Messungen an diesen Proben zeigen, im Vergleich zu (001) orientierten Schichten, eine erhöhte Dämpfung. Zudem kann bei diesen Schichten eine schichtdickenabhängige uni-direktionale magnetische Anisotropie gemessen werden. Im Hinblick auf den möglichen industriellen Einsatz in Speicherelementen werden überdies Messungen an Sub-Mikrometer großen NiMnSb Elementen auf (001) orientierten Substraten präsentiert. Die Elemente wurden mittels Elektronenstrahllithographie hergestellt und mittels FMR vermessen. Auch die so prozessierten Schichten zeigen einen Dämpfungsfaktor im unteren 10-3 Bereich. Das Auftreten von magnetostatischen Moden in den Messungen ist ein weiterer indirekter Nachweis der hohen Qualität der NiMnSb-Schichten. Im Jahre 2001 wurde von Mizukamie und seinen Kollegen eine dickenabhängige Erhöhung der Gilbertdämpfung bei, mit Metallen bedeckten, Permalloy-Schichten beobachtet. Im Jahr darauf wurde von Tserkovnyak, Brataas und Bauer eine Theorie erarbeitet die dieses Phänomen auf ein Pumpen von Spins aus dem Ferromagneten in die Metalschicht zurückführt. Aus diesem Grund werden Messungen von NiMnSb Schichten, die mit verschiedenen Metallen und Isolatoren in-situ vor Oxidation geschützt wurden, präsentiert. Nach diesen materialspezifischen Voruntersuchungen werden auf NiMnSb und Permalloy basierte Pseudo-Spin-Ventile unter Verwendung eines selbst ausrichtenden lithographischen Prozesses hergestellt. Transportmessungen an den Proben zeigen ein GMRVerhältnis von 3,4% bei Raumtemperatur und fast das doppelte bei tiefen Temperaturen. Diese sind sehr gut vergleichbar mit den besten veröffentlichten GMR-Verhältnissen für Einzelschichtsysteme. Überdies kann in den Experimenten eine viel versprechend geringe kritische Stromdichte, die nötig ist, um die magnetische Orientierung zu ändern, gemessen werden. Diese ist vergleichbar mit kritischen Stromdichten aktuellster metallbasierter GMR-Elemente oder auf dem Tunneleffekt basierenden Spin-Ventilen. Das eigentliche Potential der auf NiMnSb basierenden Spin-Ventile wird erst ersichtlich wenn diese als STO zum Emittieren hochfrequenter, durchstimmbarer und schmalbandiger elektromagnetischer Wellen verwendet werden. Auf Heusler basierende STO zeigen einen überdurchschnittlich hohen q-Faktor von 4180, sogar im Betrieb ohne extern angelegtes Magnetfeld. Dieser ist um mehr als eine Größenordnung höher als der höchste veröffentliche q-Faktor eines ohne externes Feld arbeitenden STO. Während die Heusler basierten STO ebenso wie alle anderen STO unter einer geringen Ausgangsleistung leiden, machen die Maßstäbe im Sub-Mikrometer Bereich eine On-Chip Herstellung möglich. Somit kann durch ein Parallelschalten von gekoppelten Oszillatoren eine Erhöhung der Ausgangsleistung erzielt werden. / Since the discovery of spin torque in 1996, independently by Berger and Slonczewski, and given its potential impact on information storage and communication technologies, (e.g. through the possibility of switching the magnetic configuration of a bit by current instead of a magnetic field, or the realization of high frequency spin torque oscillators (STO), this effect has been an important field of spintronics research. One aspect of this research focuses on ferromagnets with low damping. The lower the damping in a ferromagnet, the lower the critical current that is needed to induce switching of a spin valve or induce precession of its magnetization. In this thesis ferromagnetic resonance (FMR) studies of NiMnSb layers are presented along with experimental studies on various spin-torque (ST) devices using NiMnSb. NiMnSb, when crystallized in the half-Heusler structure, is a half-metal which is predicted to have 100% spin polarization, a consideration which further increases its potential as a candidate for memory devices based on the giant magnetoresistance (GMR) effect. The FMR measurements show an outstandingly low damping factor for NiMnSb, in low 10-3 range. This is about a factor of two lower than permalloy and well comparable to lowest damping for iron grown by molecular beam epitaxy (MBE). According to theory the 100% spin polarization properties of the bulk disappear at interfaces where the break in translational symmetry causes the gap in the minority spin band to collapse but can remain in other crystal symmetries such as (111). Consequently NiMnSb layers on (111)(In,Ga)As buffer are characterized in respect of anisotropies and damping. The FMR measurements on these samples indicates a higher damping that for the 001 samples, and a thickness dependent uniaxial in-plane anisotropy. Investigations of the material for device use is pursued by considering sub-micrometer sized elements of NiMnSb on 001 substrates, which were fabricated by electron-beam lithography and measured by ferromagnetic resonance. The damping remains in the low 10-3 range as determined directly by extracting the Gilbert damping from the line width. Additionally magnetostatic modes are observed in arrays of elements, which is further evidence of high material quality of the samples. By sputtering various metals on top of the NiMnSb, spin pumping from the ferromagnet into the non-magnetic layer is investigated. After these material investigations, pseudo-spin-valves using NiMnSb as one of the ferromagnet, in combination with Permalloy were fabricating using a self-aligned lithography process. These samples show a GMR ratio of 3.4% at room temperature and almost double at low temperature, comparing favourably to the best single stack GMR structures reported to date. Moreover, current induced switching measurements show promisingly low current densities are necessary to change the magnetic orientation of the free layer. These current densities compete with state-of-the-art GMR devices for metal based structures and almost with tunnel junction devices. The true potential of these devices however comes to light when they are operated as spin torque oscillators to emit high frequency, tunable, narrow spectrum electromagnetic waves. These Heusler based STOs show an outstanding q-factor of 4180, even when operating in the absence of an external field, a value which bests the highest value in the literature by more than an order of magnitude. While these devices currently still suffer from the same limited output power as all STO reported to date, their sub-micron lateral dimensions make the fabrication of an on-chip array of coupled oscillators, which is a promising path forward towards industrially relevant output power.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:5296
Date January 2011
CreatorsRiegler, Andreas
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds