In dieser Dissertation wurde das epitaktische Wachstum und die Charakterisierung des halb-metallischen Ferromagneten NiMnSb vorgestellt. NiMnSb kristallisiert in der C1b Kristallstruktur, welche ähnlich der Zinkblendestruktur von häufig verwendeten III-V Halbleitern ist. Eine besondere Eigenschaft von NiMnSb ist die theoretische 100% Spin-polarisation an der Fermikante, die es zu einem perfekten Kandidaten für Spintronikexperimente macht. Eine weitere große Rolle für diese Arbeit spielten die magnetischen Eigenschaften von NiMnSb, insbesondere die niedrige magnetische Dämpfung der abgeschiedenen Schichten. Alle gewachsenen Schichten wurden mit der MBE-Technik hergestellt. Die Schichtstapel für alle unterschiedlichen Experimente und Anwendungen wurden auf InP Substrate in (001) oder (111)B Orientierung abgeschieden. Vor der NiMnSb Schicht wurde eine undotierte (In,Ga)As Pufferschicht gewachsen. Für einige Proben auf InP(111)B wurde zusätzlich eine Si-dotierte (In,Ga)As-Schicht auf die undotierte (In,Ga)As-Schicht gewachsen. Die Dotierungskonzentration der n-dotierenten Schicht wurde per ETCH-CV bestimmt. Alle Schichten wurden auf strukturelle Eigenschaften und die NiMnSb-Schichten zusätzlich auf magnetische Eigenschaften untersucht. Für die strukturellen Untersuchungen wurde die in-situ Technik RHEED und das ex-situ Werkzeug HRXRD verwendet. Auf beiden Orientierungen zeigten die RHEED-Beobachtungen eine gute Qualität der gewachsenen Puffer- und halb-metallischen Ferromagnetschichten. Dieses Ergebnis wurde durch die HRXRD-Messung bestärkt. Es konnte die vertikale Gitterkonstante bestimmt werden. Der erhaltene Wert von NiMnSb auf InP(001) a(NiMnSb_vertikal) = 5.925 Å ist in guter Übereinstimmung mit dem Literaturwert a(NiMnSb_Lit) = 5.903 Å[Cas55]. Für NiMnSb auf InP(111)B wurde eine vertikale Gitterkonstante von a(NiMnSb_vertikal) = 6.017 Å bestimmt. Die horizontale Gitterkonstante des Puffers und des halb-metallischen Ferromagneten konnte in guter Übereinstimmung mit der Substratgitterkonstante bestimmt werden. Allerdings ist dieses Ergebnis ausschließlich bis zu einer Schichtdicke von ≈40nm für NiMnSb gültig. Um diese maximale Schichtdicke zu erhöhen, wurden NiMnSb auf InP(001) Substrate gewachsen und mit einer Ti/Au-Schicht als Schutz versehen. Mit diesen Proben wurden reziproke Gitterkarten des (533) Reflex mit GIXRD am Synchrotron BW2 des HASYLAB gemessen [Kum07]. Es hat sich gezeigt, dass sich die kritische Schichtdicke mehr als verdopppeln lässt, wenn eine Ti/Au- Schicht direkt nach dem Wachstum von NiMnSb abgeschieden wird, ohne das Ultrahochvakuum (UHV) zu verlassen. Die magnetischen Eigenschaften wurden mit FMR Experimenten und SQUID bestimmt. Der gemessene magnetische Dämpfungsparameter α einer 40nm dicken NiMnSb Schicht auf InP(001) wurde zu 3.19e−3 entlang [1-10] bestimmt. Die resultierende Linienbreite von unseren Schichten auf InP(001) ist mehr als 4.88 mal kleiner als bei [Hei04] gemessen. Ein weiteres Ergebnis ist die Richtungsabhängigkeit der Dämpfung. Es wurde gemessen, dass die Dämpfung sich um mehr als 42% ändert, wenn das angelegte Feld um 45° von [1-10] nach [100] gedreht wird. Mit SQUID messten wir die Sättigungsmagnetisierung von einer 40nm dicken NiMnSb-Schicht zu 4µB. NiMnSb-Schichten auf InP(111)B Substrate wurden ebenfalls mit FMR untersucht, mit einem überraschenden Ergebnis. Diese Schichten zeigten nicht nur eine Abnahme im Anisotropiefeld mit ansteigender Schichtdicke, sondern auch ein uniaxiales Anisotropieverhalten. Dieses Verhalten kann mit Defekten in diesen Proben erklärt werden. Mit einem Rasterkraftmikroskop (AFM) wurden dreieckige Defekte gemessen. Diese Defekte haben ihren Ursprung in der Pufferschicht und beeinflussen die magnetischen Eigenschaften. Ein weiterer Teil dieser Arbeit widmete sich dem Verhalten von NiMnSb bei Temperaturen um die 80K. In unserer Probe konnte ein Phasenübergang in den Messdaten des normalen Hall Koeffizienten, anomalen Hall-Term und Leitungswiderstand nicht beobachtet werden. Der letzte Teil dieser Arbeit behandelt verschiedene Spintronikanwendungen, welche aus unseren NiMnSb-Schichten gebaut wurden. In einer ersten Anwendung agiert die Magnetisierung auf einen Strom I. Die so genannte GMR-Anwendung besteht aus InP:S(001)- 180nm undotierten (In,Ga)As - 40nm NiMnSb - 10nm Cu - 6nm NiFe - 10nm Ru in CPP Geomtrie . Wir erhielten ein MR-Verhältnis von 3.4%. In einer zweiten Anwendung agiert der Strom I auf die Magnetisierung und nutzt dabei das Phänomen des Spin-Drehmomentes aus. Dieser so genannte Spin Torque Oscillator (STO) emittiert Frequenzen im GHz Bereich (13.94GHz - 14.1GHz). Die letzte hergestellte Anwendung basiert auf dem magnetischen Wirbelphänomen. Für das Umschalten der Kernpolarität sind die gyrotropischen Frequenzen f + = 254MHz, f − = 217MHz und ein totales, statisches magnetisches Feld von nur mµ0H = 65mT nötig. Die Umkehreffizienz wurde besser als 99% bestimmt. / In this work the epitaxial growth and characterization of the half-metallic ferromagnet NiMnSb was presented. NiMnSb crystallizes in the C1b structure which is similar to the zinc blende structure from widely used III-V semiconductors. One special property of NiMnSb is the theoretical 100% spin-polarization at the Fermi edge. This makes it a perfect candidate for spintronic experiments and the material of choice for building novel spintronic devices. Another important topic in this work were the magnetic properties of NiMnSb, especially the low magnetic damping of the grown thin films. All grown layers were fabricated with the technique of MBE. The layer stacks for all different experiments and devices were grown on InP substrate in (001) or (111)B orientation. Before the NiMnSb layer a buffer layer of undoped (In,Ga)As was grown. Additional for some samples on InP(111)B, a Si doped (In,Ga)As layer was grown on top of the undoped (In,Ga)As layer. The dopant concentration of this n-doped layer was determined by ETCH-CV. All layers were investigated by structural and the NiMnSb layer additional by magnetic properties. For the structural investigation the in-situ technique RHEED and ex-situ tool HRXRD were used. RHEED observations showed a good quality of the grown buffer and half-metallic ferromagnet layers on both orientations. These results were strengthened by the HRXRD measurement. The vertical lattice constant could be determined. The received value of a(NiMnSb_vertical) = 5.925 Å for NiMnSb on InP(001) is in good agreement to the value a(NiMnSb_Lit) = 5.903 Å found in literature [Cas55]. For NiMnSb on InP(111)B a vertical lattice constant of a(NiMnSb_vertikal) = 6.017 Å could be determined. The horizontal lattice constant of the buffer and the half-metallic ferromagnet layer could be determined as the same of the substrate. For NiMnSb this conclusion is only valid up to a thickness of ≈40nm. To increase this maximum thickness, NiMnSb samples were grown on InP(001) substrates and capped with Ti/Au layers. Afterwards a reciprocal space map of the (533) reflex was drawn with GIXRD at the synchrotron beamline BW2 of HASYLAB [Kum07]. It has been shown that the critical thickness is more than doubled by depositing a Ti/Au capping directly after growth of NiMnSb without breaking the ultrahigh vacuum (UHV). The magnetic properties were determined with FMR experiments and SQUID measurements. The received magnetic damping parameter α from a 40nm thick NiMnSb layer on InP(001) could be determined to 3.19e−3 along [1-10]. The resulting line width of our NiMnSb layers on InP(001) is more than 4.88 times smaller than measured before [Hei04]. Another result is the direction dependence of the damping. It has been measured that the difference of the damping is changed by more than 42% when rotating the applied field by 45° from [1-10] to [100].With SQUID we measured a saturation magnetization of a 40nm thick NiMnSb layer as 4µB. NiMnSb layers on InP(111)B substrate where also measured with FMR with a surprising result. These layers not only showed a decreasing in the anisotropy field with increasing thickness but also an uniaxial anisotropy. This behaviour can be explained with defects on these samples. With an AFM triangle-like defects were measured. These defects originated from the buffer layer and influenced the magnetic properties. Another part of this work is dedicated to the behaviour of NiMnSb at temperatures around 80K. With our samples, no phase transition can be observed in the data of the Hall, anomalous Hall term and resistivity. The last part of this work discusses different spintronic devices build with our NiMnSb layers. In a first device the magnetization acts on the current. This Giant Magneto Resistance (GMR) device consisted of InP:S(001) - 180nm undoped (In,Ga)As - 40nm NiMnSb - 10nm Cu - 6nm NiFe - 10nm Ru in current perpendicular to plane (CPP) geometry. We received a Magneto-Resistance-Ratio of 3.4%. In a second device the current acts on the magnetization and makes use of the spin torque phenomena. This so called Spin Torque Oscillator (STO) emitted frequencies in the GHz range (13.94GHz - 14.1GHz). The last fabricated device is based on the magnetic vortex phenomena. For switching the core polarity the gyrotropic frequencies f + = 254MHz f − = 217MHz and a total static magnetic field of only mµ0H = 65mT were necessary. The reversal efficiency has been determined as better than 99% [Lou09].
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:6066 |
Date | January 2011 |
Creators | Lochner, Florian |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0122 seconds