In this thesis, we focus attention on the effects of disorder in closed interacting quantum systems that give rise to a many-body localization (MBL) transition between an ergodic phase and a many-body localized phase. This transition is not a conventional one, since it takes place at any finite energy density and can neither be described by thermodynamics nor conventional statistical mechanics. We explain why systems experiencing such an MBL transition can be regarded as generic in many ways, we do so by discussing many of their spectral properties and by giving a detailed account of their manifestation in the nonequilibrium dynamics and long-time behavior. Surprisingly, a wide variety of MBL systems consistently reflect strikingly similar characteristic effects in each side of the MBL transition. This is backed by myriads of numerical and experimental observations which in turn can be partially explained by theories developed in the past decade. However, some mechanisms behind the ergodic side of the MBL transition and the nature of the MBL transition itself remain elusive. These, as well as the lack of an accurate description of the nonergodic character of the steady states of such systems, have been some of the issues for active research and speculation by scholars that need to be timely addressed.
In the following, we describe our modest contributions at bridging the gap of understanding of some of the issues exposed above.
On the one hand, reduced density matrices are central objects for the description of the relaxation of local observables in closed quantum many-body systems, and on the other, quench protocols are experimentally relevant procedures. In the first part of this thesis we study the long-time behavior of the one-particle density matrix (OPDM) occupation spectrum after a quench. It was shown that, in the many-body localized phase (which can be understood in terms of localized quasiparticles), the OPDM occupation spectrum in eigenstates shows a zero-temperature Fermi liquid-like discontinuity at any finite energy density. In this thesis we show that in the steady state reached at long times after a global quench from a perfect density-wave state, the discontinuity in the OPDM occupation spectrum is absent, reminiscent of a Fermi liquid at a finite temperature, while the full occupation function remains strongly nonthermal. We discuss how one can understand this as a consequence of the local structure of the density-wave state and the resulting partial occupation of quasiparticles. We further show how these partial occupations can be controlled by tuning the structure of initial state and described by an effective temperature.
Another part of this thesis was devoted to the study of dynamics on the ergodic side of the transition in periodically driven systems in the absence of global conservation laws. Most numerical studies in this context were done in models with conserved quantities (e.g., energy and/or particle number) which could account for the reduction of the overall complexity of the problem, while in this thesis, we use a numerical technique based on the fast Walsh-Hadamard transform that allows us to perform an exact time evolution for large systems and long times. As in models with conserved quantities, we observe a slowing down of the dynamics as the transition into the many-body localized phase is approached. This is reflected in anomalous behavior of the energy absorption of the system, as well as consistent with a subballistic spread of entanglement and a stretched-exponential decay
of an autocorrelation function, with their associated exponents reflecting slow dynamics near the transition for a
fixed system size. However, with access to larger system sizes, we observe a clear flow of the exponents towards
faster dynamics and cannot rule out that the slow dynamics is a finite-size effect. Furthermore, we observe examples of nonmonotonic dependence of the exponents with time, with the dynamics initially slowing down but accelerating again at larger times, which could be consistent with the slow dynamics being a crossover phenomenon with a localized critical point. In addition, we observe no difference between the typical and average value of the autocorrelation function and therefore our results are inconsistent with the phenomenological explanation of the anomalous behavior based on Griffiths effects.
In the last part of this thesis, we study dynamics in the ergodic phase relating to two main quantum information measures: One is the entanglement entropy, which is an intrinsic property of the wave function and generated by the time evolution operator, while the other is the operator entanglement entropy of the time evolution operator, which quantifies the complexity of the latter. It is known that generic quantum many-body systems typically show a linear growth of the entanglement entropy growth after a quench from a product state. In this thesis we show that there is a robust correspondence between the operator entanglement entropy of the time evolution operator and the entanglement entropy growth of typical product states, whereas special product states, e.g., $\sigma_z$ basis states, may exhibit faster entanglement production. We base our analysis on numerical simulations of a static and a periodically driven quantum spin chain in the presence of a disordered magnetic field, showing that both the wave function and operator entanglement entropies exhibit a power-law growth with the same disorder-dependent exponent. With this, we clarify the discrepancy between the exponents observed in previous results. Our results provide further evidence for slow information spreading on the ergodic side of the many-body localization transition in the absence of conservation laws. / In dieser Dissertation setzen wir uns mit dem Effekt von Unordnung auf geschlossene wechselwirkende Quantensysteme auseinander. Unordnung kann einen Übergang von einer ergodischen in eine lokalisierte Phase induzieren, eine sogenannte Vielteilchenlokalisierung oder Many body localization (MBL). Dieser Phasenübergang ist alles andere als konventionell: Er kann weder durch Thermodynamik noch durch klassische statistische Mechanik beschrieben werden. Wir erklären, warum Systeme, die solch einen MBL Übergang aufweisen, in vielerlei Hinsicht als generisch angesehen werden können. Dazu diskutieren wir die spektralen Eigenschaften, die Nichtgleichgewichtsdynamik und das Langzeitverhalten. Erstaunlicherweise weist eine große Vielfalt verschiedener MBL Systeme auf beiden Seiten des MBL Übergangs mit großer Konsistenz ähnliche Charakteristiken auf. Dies wird durch unzählige numerische und experimentelle Beobachtungen unterstützt, die wiederum zumindest teilweise durch theoretische Arbeiten aus dem letzten Jahrzehnt erklärt werden können. Trotzdem bleiben manche Mechanismen auf der ergodischen Seite des MBL Übergangs und die Art des MBL Übergangs weiterhin im Verborgenen. Zusammen mit der fehlenden akkuraten Beschreibung des nicht-ergodischen Charakters der stationären Zustände dieser Systeme sind diese Probleme im derzeitigen Fokus der Forschung, wobei es eine Vielzahl fundierter Vermutungen gibt, die diese Phänomene erklären. Im Folgenden beschreiben wir unseren Beitrag wie diese oben gelisteten Probleme überwunden werden können.
Reduzierte Dichteoperatoren sind zentrale Objekte, um die Relaxation von lokalen Observablen in geschlossenen Quantenvielkörpersystemen zu beschreiben und sogenannte Quenches, also die plötzliche Änderung einiger systemrelevanter Parameter, ähnlich wie beim Abschrecken mit Wasser oder Luft, sind experimentell relevante Vorgänge. Im ersten Teil dieser Arbeit untersuchen wir das Langzeitverhalten des Besetzungsspektrums des Einteilchendichteoperators (one-particle density matrix, OPDM) nach solch einem Quench. Wie zuvor gezeigt wurde, weist das OPDM Besetzungsspektrum in der MBL Phase (die im Sinne von lokalisierten Quasiteilchen verstanden werden kann) für alle endlichen Energiedichten eine Diskontinuität auf, ähnlich wie in Fermi-Flüssigkeiten. In dieser Arbeit zeigen wir, dass diese Diskontinuität in stationären Zuständen, die von perfekten Dichtewellen ausgehend nach langer Zeit nach einem globalen Quench erreicht werden, abwesend ist, ähnlich wie in einer Fermi-Flüssigkeit bei einer endlichen Temperatur, während die gesamte Besetzungsfunktion stark nicht-thermal bleibt. Wir diskutieren, wie man dies als Konsequenz der lokalen Struktur des Dichtewellenzustands und der daraus folgenden teilweisen Besetzung der Quasiteilchen verstehen kann. Wir zeigen außerdem, wie die teilweise Besetzung durch Änderung der Struktur des Ausgangszustands kontrolliert und durch eine effektive Temperatur beschrieben werden kann.
Im nächsten Teil dieser Arbeit untersuchen wir die Dynamik der ergodischen Seite des MBL Übergangs in periodisch getriebenen Systemen ohne globale Erhaltungsgrößen. Die meisten bisherigen in diesem Zusammenhang vorgenommenen numerischen Untersuchungen wurden in Modellen mit Erhaltungsgrößen (wie Energie und/oder Teilchenzahl) durchgeführt, was an der Reduzierung der Komplexität des Problems liegen mag. In dieser Arbeit nutzen wir hingegen eine numerische Methode, die auf einer schnellen Walsh-Hadamard Transformation beruht, was uns ermöglicht, eine exakte Zeitentwicklung für lange Zeiten und große Systeme vorzunehmen. Wie in Modellen mit Erhaltungsgrößen beobachten wir eine Verlangsamung der Dynamik, wenn wir uns dem Übergangspunkt zu der MBL Phase nähern. Dies macht sich in einem ungewöhnlichen Verhalten der Energieabsorption des Systems bemerkbar, was mit einer unterballistischen Ausbreitung der Verschränkung und einem gedehnt-exponentiellen Abklingen der Autokorrelationsfunktion im Einklang steht, wobei die zugehörigen Exponenten die verlangsamte Dynamik für fixe Systemgrößen widerspiegeln. Durch den Zugang zu größeren Systemen können wir jedoch einen deutlichen Fluss der Exponenten Richtung schnellerer Dynamik feststellen und daher nicht ausschließen, dass die verlangsamte Dynamik durch die endlichen Systemgrößen hervorgerufen wird (ein sogenannter finite size effect). Des weiteren finden wir Beispiele für eine nicht-monotone Zeitabhängigkeit der Exponenten, wobei die Dynamik sich zunächst verlangsamt, bevor sie zu späteren Zeiten wieder beschleunigt. Dies könnte mit der Betrachtung der verlangsamten Dynamik als Crossover-Phänomen mit einem lokalisierten kritischen Punkt vereinbar sein. Außerdem können wir keinen Unterschied zwischen dem geometrischen und arithmetischen Mittel der Autokorrelationsfunktion feststellen, sodass unsere Ergebnisse der phänomenologischen Erklärung des ungewöhnlichen Verhaltens, die auf Griffiths-Effekten beruht, widersprechen.
Im letzten Teil der Dissertation widmen wir der Dynamik in der ergodischen Phase und verknüpfen zwei zentrale Größen der Quanteninformation: die Verschränkungsentropie, eine der Wellenfunktion intrinsische Größe, die aus dem Zeitentwicklungsoperator generiert werden kann, und der Operatorverschränkungsentropie des Zeitentwicklungsoperators, die die Komplexität des Operators quantifiziert. In generischen Quantenvielkörpersystemen wächst die Verschränkungsentropie nach einem Quench aus einem Produktzustand typischerweise linear. In dieser Arbeit zeigen wir, dass es eine belastbaren Übereinstimmung zwischen der Operatorverschränkungsentropie des Zeitentwicklungsoperators und der Verschränkungsentropie typischer Produktzustände gibt, wobei bestimmte Produktzustände, z.B. $\sigma_z$-Basiszustände, eine schnellere Verschränkungsproduktion aufweisen können. Unsere Analyse basiert auf numerischen Simulationen von statischen und periodisch getriebenen Quanten-Spinketten in einem ungeordneten Magnetfeld. Sowohl die Verschränkungsentropie der Wellenfunktion als auch die Operatorverschränkungsentropie wächst einem Potenzgesetz folgend mit den selben unordnungsabhängigen Exponenten. Damit schaffen wir Klarheit bezüglich der Unstimmigkeiten der Exponenten in den vorherigen Ergebnissen. Unsere Resultate geben außerdem Hinweise auf eine verlangsamte Informationsausbreitung auf der ergodischen Seite des MBL Übergangs ohne Erhaltungsgrößen.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:37765 |
Date | 21 January 2020 |
Creators | Lezama Mergold Love, Talía |
Contributors | Bardarson, Jens H., Luitz, David J., Moessner, Roderich, Votja, Matthias, Technische Universität Dresden, Max-Planck-Institut für Physik komplexer Systeme |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds