Return to search

Handwritten signature verification using hidden Markov models

Thesis (MScEng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: Handwritten signatures are provided extensively to verify identity for all types of transactions
and documents. However, they are very rarely actually verified. This is because of
the high cost of training and employing enough human operators (who are still fallible) to
cope with the demand. They are a very well known, yet under-utilised biometric currently
performing far below their potential. We present an on-line/dynamic handwritten signature
verification system based on Hidden Markov Models, that far out performs human
operators in both accuracy and speed. It uses only the local signature features-sampled
from an electronic writing tablet-after some novel preprocessing steps, and is a fully
automated system in that there are no parameters that need to be manually fine-tuned
for different users. Novel verifiers are investigated which attain best equal error rates of
between 2% and 5% for different types of high quality deliberate forgeries, and take a
fraction of a second to accept or reject an identity claim on a 700 MHz computer. / AFRIKAANSE OPSOMMING: Geskrewe handtekeninge word gereeld gebruik om die identiteit van dokumente en transaksies
te bevestig. Aangesien dit duur is in terme van menslike hulpbronne, word die integrit
eit daarvan selde nagegaan. Om handtekeninge deur menslike operateurs te verifieër.
is ook feilbaar-lOO% akkurate identifikasie is onrealisties. Handtekeninge is uiters
akkurate en unieke identifikasie patrone wat in die praktyk nie naastenby tot hul volle
potensiaal gebruik word nie. In hierdie navorsing gebruik ons verskuilde Markov modelle
om dinamiese handtekeningherkenningstelsels te ontwikkel wat, in terme van spoed en
akkuraatheid heelwat meer effektief as operateurs is. Die stelsel maak gebruik van slegs
lokale handtekening eienskappe (en verwerkings daarvan) soos wat dit verkry word vanaf
'n elektroniese skryftablet. Die stelsel is ten volle outomaties en geen parameters hoef
aangepas te word vir verskillende gebruikers nie. 'n Paar tipes nuwe handtekeningverifieërders
word ondersoek en die resulterende gelykbreekpunt vir vals-aanvaardings- en
vals-verwerpingsfoute lê tussen 2% en 5% vir verskillende tipes hoë kwaliteit vervalsde
handtekeninge. Op 'n tipiese 700 MHz verwerker word die identiteit van 'n persoon ill
minder as i sekonde bevestig.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/53445
Date12 1900
CreatorsSindle, Colin
ContributorsDu Preez, J. A., Herbst, B. M., Stellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageUnknown
TypeThesis
Format104 p. : ill.
RightsStellenbosch University

Page generated in 0.0021 seconds