Return to search

Evaluate Machine Learning Model to Better Understand Cutting in Wood

Wood cutting properties for the chains of chainsaw is measured in the lab by analyzing the force, torque, consumed power and other aspects of the chain as it cuts through the wood log. One of the essential properties of the chains is the cutting efficiency which is the measured cutting surface per the power used for cutting per the time unit. These data are not available beforehand and therefore, cutting efficiency cannot be measured before performing the cut. Cutting efficiency is related to the relativehardness of the wood which means that it is affected by the existence of knots (hardstructure areas) and cracks (no material areas). The actual situation is that all the cuts with knots and cracks are eliminated and just the clean cuts are used, therefore estimating the relative wood hardness by identifying the knots and cracks beforehand can significantly help to automate the process of testing the chain properties, saving time and material and give a better understanding of cutting wood logs to improve chains quality.Many studies have been done to develop methods to analyze and measure different features of an end face. This thesis work is carried out to evaluate a machinelearning model to detect knots and cracks on end faces and to understand their impact on the average cutting efficiency. Mask R-CNN is widely used for instance segmentation and in this thesis work, Mask R-CNN is evaluated to detect and segment knots and cracks on an end face. Methods are also developed to estimatepith’s vertical position from the wood image and generate average cutting efficiency graph based on knot’s and crack’s percentage at each vertical position of wood image.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-448713
Date January 2021
CreatorsAnam, Md Tahseen
PublisherUppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationIT ; 21 044

Page generated in 0.0048 seconds