Det finns idag ett stort behov av att kunna klassificera stora mängder data på ett effektivt sätt. Prediktiv modellering är ett område inom data mining där prediktioner kan utföras baserat på tidigare erfarenheter. Dessa prediktioner presenteras sedan i en modell. Avvägningen mellan tolkningsbarhet och träffsäkerhet är ett begrepp som beskriver hur träffsäkra modeller ofta är ogenomskinliga, medan genomskinliga modeller ofta har lägre träffsäkerhet. Detta är ett problem eftersom det finns ett behov av modeller som är både träffsäkra och tolkningsbara.I denna studie visas hur man kan gå till väga för att skapa en modell som har en träffsäkerhet i klass med en ogenomskinlig modell, men samtidigt har en högre tolkningsbarhet. Två algoritmer presenteras för att ta fram en hybridmodell som bygger på beslutsträd där en implementering av Random Forest hanteras som alternativa lövnoder. Kontrollerade experiment och statistiska tester genomfördes för att mäta hybridmodellens träffsäkerhet mot träffsäkerheten hos J48 och Random Forest. Träffsäkerheten mättes även mot beslutsträd som genererats av den genetiska programmeringen som finns implementerad i ramverket G-REX.Resultatet visar att hybridmodellen kan uppnå en träffsäkerhet som är jämförbar med Random Forest men samtidigt hanterar de vanliga prediktionslöven i genomsnitt 39,21% av instanserna. Alltså är den hybridmodell som presenteras i studien mer tolkningsbar än Random Forest utan att ha någon signifikant skillnad i träffsäkerhet. / Program: Systemarkitekturutbildningen
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hb-17316 |
Date | January 2013 |
Creators | Johansson, Fredrik, Lindgren, Markus |
Publisher | Högskolan i Borås, Institutionen Handels- och IT-högskolan, Högskolan i Borås, Institutionen Handels- och IT-högskolan, University of Borås/School of Business and IT |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Kandidatuppsats, ; 2013KSAI02 |
Page generated in 0.0035 seconds