On généralise d'abord le théorème de prolongement $L^2$ d'Ohsawa-Takegoshi-Manivel au cas des jets de sections holomorphes d'un fibré en droites hermitien au-dessus d'une variété kählérienne faiblement pseudoconvexe. On donne ensuite une démonstration simple, en étudiant un courant de type $(1, 1),$ d'un résultat d'Uhlenbeck et Yau qui avait permis d'établir la correspondance de Kobayashi-Hitchin sur les variétés kählériennes compactes. Dans la troisième partie on étudie une conjecture sur l'existence de régularisations des courants quasi-positifs fermés, avec contrôle des masses de Monge-Ampère, qui permettrait d'obtenir une nouvelle caractérisation des variétés de Moishezon généralisant celles de Siu et de Demailly qui répondaient à la conjecture de Grauert-Riemenschneider. On donne une estimation uniforme de la perte de positivité dans le théorème de régularisation des courants de Demailly et on obtient une version effective de la génération globale des faisceaux d'idéaux multiplicateurs sur un ouvert pseudoconvexe de $(\bf C)^n.$
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00004007 |
Date | 24 October 2003 |
Creators | POPOVICI, Dan |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds