Return to search

Characterization of mechanical properties of thin films deposited by magnetron sputtering methods

The aim of this thesis is to determine the mechanical properties of copper, titanium and carbon thin films deposited on foil substrates, and identify how the properties are affected by the deposition process. This is important when such coated foils are subjected to mechanical deformation during applications. Three coating materials, Cu, Ti, and C, were evaluated on PET and Al foils. The materials were deposited by direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). The crack initiation and propagation during tensile tests were investigated in-situ by a SEM. The coatings’ crack onset strain (COS), cohesive strength, interfacial shear strength (IFSS), and Weibull shape and scale parameters were successfully determined from the experimental data. The results showed the Cu coatings had similar cohesive strengths and IFSS, independent of the deposition process. The main difference was the COS, where thin films deposited with ion assistance displayed a higher value. The coatings also displayed different morphologies that clearly influenced the crack propagation. Larger grains hindered the crack propagation and resulted in a more ductile fragmentation, with coatings displaying short and tortuous cracks. All Ti films displayed similar fragmentation and thus mechanical properties, despite small differences in morphology. However, the surface roughness of the Al foil influences the results. Localized stresses arise in the rolling tracks from the foil production and facilitates the crack propagation, thus affecting the fragmentation of the coatings. Lastly, it could be shown that the addition of a thin Ti adhesion layer resulted in a fully adherent C film.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-533882
Date January 2024
CreatorsKällkvist, Lova
PublisherUppsala universitet, Fasta tillståndets elektronik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC K, 1650-8297 ; 24021

Page generated in 0.0018 seconds