Return to search

CuPGS Laminate Core for a Matrix Microchannel Heat Exchanger

Cryocooling is a continuously developing field of engineering, applied in the fieldsof aerospace, military, and medical sciences among others. There is a demand forsmaller and more efficient cryocoolers for spaceborne low-light observation missions,with many custom cooling systems having completed successful missions. The Stir-ling cycle is the most prevalent refrigeration technique used for space applications,with the pulse-tube, Joule-Thomson or reverse Brayton cycles being used in somespecial cases.A matrix heat exchanger is designed with 3D-printed 17-4 PH stainless steel end capsstreamlined for computer numerical control (CNC) production. The heat exchanger (HX) core consists of 1mm thick stainless steel spacers and 250μm thick copperchips that are tolerance-matched for photo etching, as well as pyrolytic graphitesheets (PGS) of 25μm, the thickest commercially available PGS without addedadhesive film material.The experiments of joining PGS and copper chips with Epo-Tek 301-2 epoxy tocreate a solid core structure for the heat exchanger did not result in a pressure-resistant laminate material. The graphite surface proved difficult to adhere to usingthis epoxy, creating voids, and easily delaminated into separate layers of PGS. Bond-ing the stack together using indium, testing epoxy with a higher ability to permeatethe PGS or diffusion-bonding through other means are presented as options forfurthering the HX development.Pressure testing of a copper-only laminated heat exchanger core showed that theend cap recess adhesion capability is a potential point of failure, as the designedstructure makes it impossible to inspect the results of the bond without curingthe epoxy and pressurising the system. The difficulty in establishing a tight seambetween the main counter-flow channels of the HX is also demonstrated here, asleakage between the channels occurred at pressures in the vicinity of 2

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-76914
Date January 2019
CreatorsSkog, Torkel
PublisherLuleå tekniska universitet, Institutionen för system- och rymdteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds